3. Modeling A#

3.1. Characteristics of modeling#

It’s axisymmetric modeling.

_images/100000000000039F000000FF1DF6A2E0FB4C8C95.png

Boundary conditions:

in \(B\)

DDL_IMPO: (GROUP_NO: B

DY: 0.)

on \(\mathrm{AG}\)

DDL_IMPO: (GROUP_NO: LaG

DX: 0.)

Loading:

\[\]

: label: EQ-None

textrm {en} A

Node name:

\(A=\mathrm{N1}\)

\(B=\mathrm{N755}\)

\(D=\mathrm{N858}\)

\(G=\mathrm{N201}\)

Breakdown:

100 elements along the radius

2 elements depending on the thickness

3.2. Characteristics of the mesh#

Number of knots: 905

Number of meshes and types: 100 QUAD 8, 200 TRIA 6, 200 6, 208 SEG 3

3.3. Tested values#

Location

Value type

Reference

Aster

% difference

Point \(A\)

\({W}_{A}(m)\)

—0.4596 10—3

—0.4617 10—3

0.46

\({e}_{p}(\mathrm{Nm}/\mathrm{rd})\)

—1.2799 10—2

—1.2859 10—2

0.47

3.4. notes#

  • The value of the load to be supplied is reduced to a sector of 1 radian. Consequently, the value of the potential energy given on the result file corresponds to the deformation of this sector (to the nearest sign).

  • Option ENERPOT actually calculates deformation energy:

_images/Object_6.svg

which is the same as potential energy at the nearest sign:

\({E}_{p}=\frac{1}{2}{U}^{T}KU-{U}^{T}F=-\frac{1}{2}{U}^{T}F=-\frac{1}{2}{U}^{T}KU\) (because \(\mathrm{KU}=F\))