2. Benchmark solution#
2.1. Calculation method used for the reference solution#
We ask:
\({k}_{\mathrm{An}}=\frac{{\mathrm{EI}}_{\mathrm{An}}}{{l}_{\mathrm{An}}}\)
with \(n=B,C,D\) or \(E\)
\(\begin{array}{}K={k}_{\mathrm{AB}}+{k}_{\mathrm{AD}}+{k}_{\mathrm{AE}}+\frac{3}{4}{k}_{\mathrm{AC}}\\ {r}_{\mathrm{An}}=\frac{{k}_{\mathrm{An}}}{K}\end{array}\)
with \(n=B,C,D\) or \(E\)
\({C}_{1}=+\frac{{\mathrm{Fl}}_{\mathrm{AD}}}{8}-\frac{{\mathrm{pl}}_{\mathrm{AB}}^{2}}{12}\)
Rotation to \(A\):
\(\theta =\frac{{C}_{1}}{\mathrm{4K}}\)
Moment in \(A\):
\(\begin{array}{}{M}_{\mathrm{AB}}=+\frac{{\mathrm{pl}}_{\mathrm{AB}}^{2}}{12}+{r}_{\mathrm{AB}}\mathrm{.}{C}_{1}\\ {M}_{\mathrm{AD}}=-\frac{{\mathrm{Fl}}_{\mathrm{AD}}}{8}+{r}_{\mathrm{AD}}\mathrm{.}{C}_{1}\\ {M}_{\mathrm{AE}}={r}_{\mathrm{AE}}\mathrm{.}{C}_{1}\\ {M}_{\mathrm{AC}}={r}_{\mathrm{AC}}\mathrm{.}{C}_{1}\end{array}\)
2.2. Benchmark results#
Value of rotation and moments in \(A\).
2.3. Bibliographical references#
Guide VPCS - 1990 edition.