1. Reference problem#
1.1. Geometry#
Problem plan

Beam |
Length |
Moment of inertia |
\(\mathrm{AB}\) |
|
|
\(\mathrm{AC}\) |
|
|
\(\mathrm{AD}\) |
|
|
\(\mathrm{AE}\) |
|
|
\(G\) is in the middle of \(\mathrm{DA}\).
Another characteristic of beams that are not used for calculations: the beams have a square cross section.
\(\begin{array}{}{A}_{\mathrm{AB}}=16{10}^{-4}m\\ {A}_{\mathrm{AD}}=1{10}^{-4}m\\ {A}_{\mathrm{AC}}=1{10}^{-4}m\\ {A}_{\mathrm{AE}}=4{10}^{-4}m\end{array}\)
1.2. Material properties#
Isotropic linear elastic material: \(E=2.{10}^{11}\mathrm{Pa}\)
1.3. Boundary conditions and loads#
Point \(C\): articulated \(({u}_{C}={v}_{C}=0)\).

Punctual force in \(G\): \(F=-{10}^{5}N\)
Force distributed on the beam \(\mathrm{AD}\): \(p=-{10}^{3}N/m\)