2. Benchmark solution#
2.1. Calculation method used for the reference solution#
2.1.1. Case 1: free end#
The equation for the beam is written as:
We are looking for a solution in the form of:
with \(\omega =\sqrt{\frac{\mathit{EI}}{\rho S}}{k}^{2}\)
The boundary conditions are as follows:
In \(x=0\), \(v=0\) and \(\frac{{d}^{2}v}{{\mathit{dx}}^{2}}=0\)
In \(x=L\), \(\frac{{d}^{2}v}{{\mathit{dx}}^{2}}=0\) and \(\frac{{d}^{3}v}{{\mathit{dx}}^{3}}=0\)
Replacing \(v\) with the expression (), we get:
In \(x=0\), \(A=C=0\);
In \(x=L\), \(\mathrm{sin}(\mathit{kL})\mathrm{cosh}(\mathit{kL})=\mathrm{cos}(\mathit{kL})\mathrm{sinh}(\mathit{kL})\) (3)
The first six roots of () are given in the following table:
\(\mathit{kL}\) |
\(0\) |
\(3.9266\) |
\(7.06858\) |
\(10.2102\) |
\(13.3518\) |
\(16.4934\) |
From this we deduce the values of \({\omega }_{i}\), \(i=\mathrm{1,}\mathrm{...},6\).
2.1.2. Case 2: elastic end#
The eigenvalue equation is as follows:
: label: eq-4
mathrm {sin} (mathit {kL})left ({k}} ^ {3} {L} ^ {3}frac {mathit {EI}} {{L} ^ {3}}}mathrm {kL}}}mathrm {kL})mathrm {kL})right)mathrm {3}}}mathrm {3}}}mathrm {3}}}mathrm {cosh} (mathit {kL})right) -mathrm {cosh} (mathit {kL}) sinh} (mathit {kL})left ({k}} ^ {3} {3} {L} ^ {3}frac {mathit {EI}} {{L} ^ {3}}mathrm {cos}} (mathrm {cos}} (mathit {cos}} (mathit {cos}}) (mathit {cos}} (mathit {cos}} (mathit {kL}}) (mathit {kL})right) (mathit {kL})right) =0
The own pulsations are given by:
: label: eq-5
omega =frac {1} {{L} ^ {2}}}sqrt {frac {mathit {EI}} {rho S}} {k}} {k} ^ {2} ^ {2} {2} {L} ^ {2}
The first six roots of () are given in the following table:
\(\mathit{kL}\) |
\(2.7880886\) |
\(4.5619625\) |
\(7.1895724\) |
\(10.249031\) |
\(13.368916\) |
\(16.502406\) |
We then deduce the values of \({\omega }_{i}\), \(i=\mathrm{1,}\mathrm{...},6\).
2.2. Benchmark results#
2.2.1. Case 1: free end#
The structure has a rigid mode at zero frequency. The following table shows the non-zero frequencies.
Mode |
Frequency (\(\mathit{Hz}\)) |
1 |
|
2 |
|
3 |
|
4 |
|
5 |
|
2.2.2. Case 2: elastic end#
Mode |
Frequency (\(\mathit{Hz}\)) |
1 |
|
2 |
|
3 |
|
4 |
|
5 |
|
6 |
|
2.3. Uncertainty about the solution#
Analytical solution.