Benchmark solution ===================== Calculation method used for the reference solution -------------------------------------------------------- Case 1: free end ~~~~~~~~~~~~~~~~~~~~~~~~~ The equation for the beam is written as: .. math:: :label: eq-1 \ frac {{d} ^ {4} v} {{\ mathit {xx}}} ^ {4}} =\ frac {-\ rho S} {\ mathit {EI}}}\ frac {{d}} ^ {d} ^ {d} ^ {2} v} {{2} v} {{\ mathit {dt}}} ^ {2}} We are looking for a solution in the form of: .. math:: :label: eq-2 v (x) =\ mathrm {sin} (\ omega t)\ left [A\ mathrm {cos} (\ mathit {kx}) +B\ mathrm {sin} (\ mathit {kx}) +C\ mathrm {kx}) +C\ mathrm {kx}) +C\ mathrm {kx}) +C\ mathrm {kx}) +C\ mathrm {kx}) +C\ mathrm {kx}) +C\ mathrm {kx})\ right] with :math:`\omega =\sqrt{\frac{\mathit{EI}}{\rho S}}{k}^{2}` The boundary conditions are as follows: In :math:`x=0`, :math:`v=0` and :math:`\frac{{d}^{2}v}{{\mathit{dx}}^{2}}=0` In :math:`x=L`, :math:`\frac{{d}^{2}v}{{\mathit{dx}}^{2}}=0` and :math:`\frac{{d}^{3}v}{{\mathit{dx}}^{3}}=0` Replacing :math:`v` with the expression (), we get: * In :math:`x=0`, :math:`A=C=0`; * In :math:`x=L`, :math:`\mathrm{sin}(\mathit{kL})\mathrm{cosh}(\mathit{kL})=\mathrm{cos}(\mathit{kL})\mathrm{sinh}(\mathit{kL})` (3) The first six roots of () are given in the following table: .. csv-table:: ":math:`\mathit{kL}`" ":math:`0`" ":math:`3.9266`" ":math:`7.06858`" ":math:`10.2102`" ":math:`13.3518`" ":math:`16.4934`" From this we deduce the values of :math:`{\omega }_{i}`, :math:`i=\mathrm{1,}\mathrm{...},6`. Case 2: elastic end ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The eigenvalue equation is as follows: .. math:: : label: eq-4 \ mathrm {sin} (\ mathit {kL})\ left ({k}} ^ {3} {L} ^ {3}\ frac {\ mathit {EI}} {{L} ^ {3}}}\ mathrm {kL}}}\ mathrm {kL})\ mathrm {kL})\ right)\ mathrm {3}}}\ mathrm {3}}}\ mathrm {3}}}\ mathrm {cosh} (\ mathit {kL})\ right) -\ mathrm {cosh} (\ mathit {kL}) sinh} (\ mathit {kL})\ left ({k}} ^ {3} {3} {L} ^ {3}\ frac {\ mathit {EI}} {{L} ^ {3}}\ mathrm {cos}} (\ mathrm {cos}} (\ mathit {cos}} (\ mathit {cos}}) (\ mathit {cos}} (\ mathit {cos}} (\ mathit {kL}}) (\ mathit {kL})\ right) (\ mathit {kL})\ right) =0 The own pulsations are given by: .. math:: : label: eq-5 \ omega =\ frac {1} {{L} ^ {2}}}\ sqrt {\ frac {\ mathit {EI}} {\ rho S}} {k}} {k} ^ {2} ^ {2} {2} {L} ^ {2} The first six roots of () are given in the following table: .. csv-table:: ":math:`\mathit{kL}`" ":math:`2.7880886`" ":math:`4.5619625`" ":math:`7.1895724`" ":math:`10.249031`" ":math:`13.368916`" ":math:`16.502406`" We then deduce the values of :math:`{\omega }_{i}`, :math:`i=\mathrm{1,}\mathrm{...},6`. Benchmark results ---------------------- Case 1: free end ~~~~~~~~~~~~~~~~~~~~~~~~~ The structure has a rigid mode at zero frequency. The following table shows the non-zero frequencies. .. csv-table:: "Mode", "Frequency (:math:`\mathit{Hz}`)" "1"," :math:`85.5`" "2"," :math:`277`" "3"," :math:`577.9`" "4"," :math:`988.2`" "5"," :math:`1507.9`" Case 2: elastic end ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. csv-table:: "Mode", "Frequency (:math:`\mathit{Hz}`)" "1"," :math:`43.1`" "2"," :math:`115.4`" "3"," :math:`286.5`" "4"," :math:`582.3`" "5"," :math:`990.7`" "6"," :math:`1509.6`" Uncertainty about the solution --------------------------- Analytical solution.