1. Reference problem#
1.1. Geometry#
Geometry of the substructures:
Pavement \(1\) |
Pavement \(2\) |
![]() |
![]() |
Pavement geometry \((m)\):
\(\mathrm{L1}=1\) \(\mathrm{L2}=0.5\)
\(\mathrm{l1}=0.5\) \(\mathrm{l2}=0.7\)
\(\mathrm{h1}=0.2\) \(\mathrm{h2}=0.2\)
Mesh group:
\(\mathrm{PAVE}\text{\_}\mathrm{NO1}\): set of \(1\) pavement links
\(\mathrm{GOCH}\text{\_}\mathrm{NO1}\): set of meshes forming the left side of the \(1\) block
\(\text{INT}\text{\_}\mathrm{NO1}\): set of cells forming the right side of the \(1\) block
\(\mathrm{PAVE}\text{\_}\mathrm{NO2}\): set of \(2\) pavement links
\(\text{INT}\text{\_}\mathrm{NO2}\): set of meshes forming the left side of the \(2\) block
\(\mathrm{DRO}\text{\_}\mathrm{NO2}\): set of cells forming the right side of the \(2\) block
Structure geometry:

Mesh group:
\(\text{LINT}\): interface made up of mesh groups \(\text{INT}\text{\_}\mathrm{NO1}\) and \(\text{INT}\text{\_}\mathrm{NO2}\)
1.2. Elastic properties of materials#
Block \(1\):
\(E=7.1E10\mathrm{Pa}\) Young’s module
\(\nu =0.3\) Poisson’s ratio
\(\rho =2700.0{\mathrm{kg.m}}^{-3}\) Density
Block \(2\):
\(E=12.0E10\mathrm{Pa}\) Young’s module
\(\nu =0.3\) Poisson’s ratio
\(\rho =7820.0{\mathrm{kg.m}}^{-3}\) Density
1.3. Boundary conditions and loads#
Imposed displacement in pavement \(1\):
\(\mathrm{GOCH}\text{\_}\mathrm{NO1}\) and \(\text{INT}\text{\_}\mathrm{NO1}\): \(\mathrm{DX}=\mathrm{DY}=\mathrm{DZ}=0.0\)
Imposed displacement in pavement \(2\):
\(\mathrm{DRO}\text{\_}\mathrm{NO2}\) and \(\text{INT}\text{\_}\mathrm{NO2}\): \(\mathrm{DX}=\mathrm{DY}=\mathrm{DZ}=0.0\)
Interface pad \(1\):
\(\text{INT}\text{\_}\mathrm{NO1}\): \(\mathrm{CRAIGB}\) interface
Interface pad \(2\):
\(\text{INT}\text{\_}\mathrm{NO2}\): \(\mathrm{CRAIGB}\) interface