2. Benchmark solution#
2.1. Calculation method used for the reference solution#
The critical pressure is given in [bib1] or [bib2] by the following expression:
\({P}_{\mathit{cr}}\mathrm{=}\frac{\mathit{Eh}}{R}\frac{1}{({n}^{2}+\frac{{b}^{2}}{2})}\left[\frac{1}{{(\frac{{n}^{2}}{{b}^{2}}+1)}^{2}}+\frac{{h}^{2}}{12{R}^{2}(1\mathrm{-}{\nu }^{2})}{({n}^{2}+{b}^{2})}^{2}\right]\)
with |
\(b\mathrm{=}\frac{\pi R}{L}\) |
\(n\) represents the number of circumferential modes |
This formula is valid in the case where \(N\mathrm{=}0.5R{p}_{\mathit{cr}}\).
2.2. Benchmark results#
2.3. Uncertainties about the solution#
Analytical solution
2.4. Bibliographical references#
S.P. TIMOSHENKO, J.M. GERE: Elastic Stability Theory, page 500, second edition, DUNOD 1966.
BO O. ALMROTH, D.O. BRUSH: Buckling of bars, plates and shells, page 173, Mc Graw-Hill, New York, 1975.