2. Reference solution#

2.1. Calculation method used for the reference solution#

The reference solution is the one given in sheet SDLS04 /89 of the guide VPCS which presents the analytical solution as follows:

The solution of the frequency determinant established from Bessel functions leads to the formula:

\({f}_{\mathrm{ij}}=\frac{1}{2\pi {R}_{e}^{2}}{\lambda }_{\mathrm{ij}}^{2}\sqrt{\frac{E{t}^{2}}{12\rho (1-{\nu }^{2})}}\)

With:

  • \(i\) = number of nodal diameters

  • \(j\) = number of nodal circles

and \({\lambda }_{\mathrm{ij}}^{2}\) such as:

i j

0

1

2

3

0

13.0

13.3

13.3

14.7

18.5

1

85.1

86.7

86.7

91.7

Flexion mode with 2 nodal diameters and 1 nodal circle: \({f}_{\mathrm{2,1}}=\mathrm{559,09}\mathrm{Hz}\)

_images/10000E1400000E2900000E7888368C4D0662053B.svg

2.2. Benchmark results#

8 clean modes.

2.3. Uncertainty about the solution#

Analytical solution.

2.4. Bibliographical references#

  1. A.W. LEISSA, Vibration of Plates, Document NASA SP160, 1969, pp. 19-30.