1. Reference problem#
1.1. Geometry#
Figure 1.1-a
\(\mathrm{7,5}m\) length straight beam.
Section features:
This is the \(U\) beam shown [Figure 1.1-b].
Figure 1.1-b : Section of the beam in \(U\)
\(h=200\mathrm{mm}\)
\(b=273\mathrm{mm}\)
\(e=\mathrm{8,2}\mathrm{mm}\)
For [bib1] we have the following data:
\({I}_{y}={I}_{z}=\mathrm{5,022}{10}^{-5}{m}^{4}\)
\(\mathrm{ZGC}=\mathrm{221,5}\mathrm{mm}\)
From the geometry of the section, we calculate:
\(S=\mathrm{6,117}{10}^{-3}{m}^{2}\) |
\({J}_{x}=\mathrm{1,28}{10}^{-7}{m}^{4}\) |
1.2. Material properties#
Young’s module: |
\(E=2.07{10}^{11}\mathrm{Pa}\) |
Poisson’s ratio: |
\(\nu =\mathrm{0,3}\) |
Density: |
\(\rho =7850\mathrm{kg}/{m}^{3}\) |
1.3. Boundary conditions#
Boundary condition:
Problem plan: \(\mathrm{DZ}\) and \(\mathrm{DRY}\) stuck.
Knots \(A\) and \(B\) supported: \(\mathrm{DX}\) and \(\mathrm{DY}\) blocked
The eccentricity is taken into account using the LIAISON_DDL operand of the AFFE_CHAR_MECA command.
The degrees of freedom are always in \(G\), and eccentricity is taken into account by: \(\mathrm{DY}(G)=\mathrm{DY}(C)+\mathrm{GC}\wedge {\Theta }_{x}\)