Reference problem ===================== Geometry --------- .. image:: images/1000039A0000154A0000054548BF3DCEC0A40115.svg :width: 219 :height: 54 .. _RefImage_1000039A0000154A0000054548BF3DCEC0A40115.svg: **Figure** 1.1-a :math:`\mathrm{7,5}m` length straight beam. **Section features:** This is the :math:`U` beam shown [:ref:`Figure 1.1-b
`]. .. image:: images/Object_1.svg :width: 219 :height: 54 .. _RefImage_Object_1.svg: **Figure** 1.1-b **:** **Section of the beam in** :math:`U` :math:`h=200\mathrm{mm}` :math:`b=273\mathrm{mm}` :math:`e=\mathrm{8,2}\mathrm{mm}` For [:ref:`bib1 `] we have the following data: :math:`{I}_{y}={I}_{z}=\mathrm{5,022}{10}^{-5}{m}^{4}` :math:`\mathrm{ZGC}=\mathrm{221,5}\mathrm{mm}` From the geometry of the section, we calculate: .. csv-table:: ":math:`S=\mathrm{6,117}{10}^{-3}{m}^{2}`" ":math:`{J}_{x}=\mathrm{1,28}{10}^{-7}{m}^{4}`" Material properties ------------------------ .. csv-table:: "Young's module:", ":math:`E=2.07{10}^{11}\mathrm{Pa}`" "Poisson's ratio:", ":math:`\nu =\mathrm{0,3}`" "Density:", ":math:`\rho =7850\mathrm{kg}/{m}^{3}`" Boundary conditions ---------------------- **Boundary condition:** Problem plan: :math:`\mathrm{DZ}` and :math:`\mathrm{DRY}` stuck. Knots :math:`A` and :math:`B` supported: :math:`\mathrm{DX}` and :math:`\mathrm{DY}` blocked The eccentricity is taken into account using the LIAISON_DDL operand of the AFFE_CHAR_MECA command. The degrees of freedom are always in :math:`G`, and eccentricity is taken into account by: :math:`\mathrm{DY}(G)=\mathrm{DY}(C)+\mathrm{GC}\wedge {\Theta }_{x}`