1. Reference problem#
1.1. Geometry#
A rotor model supported by 2 bearings (nodes \(\mathrm{B1}\) and \(\mathrm{B2}\) in the figure below), whose stiffness and damping matrices are non-symmetric. It is composed of 3 disks, and 4 shaft sections.

Figure 1.1-a -a: Rotor model with 3 disks and 2 asymmetric bearings
1.2. Material properties#
The geometric and material characteristics are listed in the following table.
Material |
\(E={2.10}^{11}N/{m}^{2}\) |
\(\rho =7800\mathrm{kg}/{m}^{3}\) |
\(\nu =0.3\) |
|
Disc |
\(\mathrm{D1}\) |
\(M=20\mathrm{kg}\) |
\({I}_{D}=200.{10}^{-3}\mathrm{kg}{m}^{2}\) |
\({I}_{P}={400.10}^{-3}\mathrm{kg}{m}^{2}\) |
\(\mathrm{D2}\) |
\(M=17\mathrm{kg}\) |
\({I}_{D}=170.{10}^{-3}\mathrm{kg}{m}^{2}\) |
\({I}_{P}={340.10}^{-3}\mathrm{kg}{m}^{2}\) |
|
\(\mathrm{D3}\) |
\(M=10\mathrm{kg}\) |
\({I}_{D}=15.{10}^{-3}\mathrm{kg}{m}^{2}\) |
\({I}_{P}=30.{10}^{-3}\mathrm{kg}{m}^{2}\) |
The characteristics of the levels are given in the tables that follow.
\(\Omega =0\mathrm{tr}/\mathrm{min}\)
Level |
\(\mathrm{P1}\) |
|
|
\({K}_{\mathit{yx}}\mathrm{=}\mathrm{-}{8.10}^{4}N\mathrm{/}m\) |
|
||
\({c}_{\mathrm{yy}}=15.{10}^{4}\mathrm{Ns}/m\) |
|
||
\({c}_{\mathit{yx}}\mathrm{=}1.{10}^{2}\mathit{Ns}\mathrm{/}m\) |
|
||
Level |
\(\mathrm{P2}\) |
|
|
\({K}_{\mathit{yx}}\mathrm{=}\mathrm{-}{8.10}^{4}N\mathrm{/}m\) |
|
||
\({c}_{\mathrm{yy}}=12.{10}^{4}\mathrm{Ns}/m\) |
|
||
\({c}_{\mathit{yx}}\mathrm{=}1.{10}^{2}\mathit{Ns}\mathrm{/}m\) |
|
\(\Omega =5000\mathrm{tr}/\mathrm{min}\)
Level |
\(\mathrm{P1}\) |
|
|
\({K}_{\mathit{yx}}\mathrm{=}\mathrm{-}{9.10}^{4}N\mathrm{/}m\) |
|
||
\({c}_{\mathrm{yy}}=15.{10}^{4}\mathrm{Ns}/m\) |
|
||
\({c}_{\mathit{yx}}\mathrm{=}1.{10}^{2}\mathit{Ns}\mathrm{/}m\) |
|
||
Level |
\(\mathrm{P2}\) |
|
|
\({K}_{\mathit{yx}}\mathrm{=}\mathrm{-}{8.10}^{4}N\mathrm{/}m\) |
|
||
\({c}_{\mathrm{yy}}=12.{10}^{4}\mathrm{Ns}/m\) |
|
||
\({c}_{\mathit{yx}}\mathrm{=}1.{10}^{2}\mathit{Ns}\mathrm{/}m\) |
|
\(\Omega =6500\mathrm{tr}/\mathrm{min}\)
Level |
\(\mathrm{P1}\) |
|
|
\({K}_{\mathit{yx}}\mathrm{=}\mathrm{-}{15.10}^{4}N\mathrm{/}m\) |
|
||
\({c}_{\mathrm{yy}}=13.{10}^{4}\mathrm{Ns}/m\) |
|
||
\({c}_{\mathit{yx}}\mathrm{=}1.{10}^{2}\mathit{Ns}\mathrm{/}m\) |
|
||
Level |
\(\mathrm{P2}\) |
|
|
\({K}_{\mathit{yx}}\mathrm{=}\mathrm{-}{13.10}^{4}N\mathrm{/}m\) |
|
||
\({c}_{\mathrm{yy}}=10.{10}^{4}\mathrm{Ns}/m\) |
|
||
\({c}_{\mathit{yx}}\mathrm{=}1.{10}^{2}\mathit{Ns}\mathrm{/}m\) |
|
\(\Omega =8000\mathrm{tr}/\mathrm{min}\)
Level |
\(\mathrm{P1}\) |
|
|
\({K}_{\mathit{yx}}\mathrm{=}\mathrm{-}{20.10}^{4}N\mathrm{/}m\) |
|
||
\({c}_{\mathrm{yy}}=11.{10}^{4}\mathrm{Ns}/m\) |
|
||
\({c}_{\mathit{yx}}\mathrm{=}2.{10}^{2}\mathit{Ns}\mathrm{/}m\) |
|
||
Level |
\(\mathrm{P2}\) |
|
|
\({K}_{\mathit{yx}}\mathrm{=}\mathrm{-}{20.10}^{4}N\mathrm{/}m\) |
|
||
\({c}_{\mathrm{yy}}=9.{10}^{4}\mathrm{Ns}/m\) |
|
||
\({c}_{\mathit{yx}}\mathrm{=}2.{10}^{2}\mathit{Ns}\mathrm{/}m\) |
|
\(\Omega =10000\mathrm{tr}/\mathrm{min}\)
Level |
\(\mathrm{P1}\) |
|
|
\({K}_{\mathit{yx}}\mathrm{=}\mathrm{-}{35.10}^{4}N\mathrm{/}m\) |
|
||
\({c}_{\mathrm{yy}}=10.{10}^{4}\mathrm{Ns}/m\) |
|
||
\({c}_{\mathit{yx}}\mathrm{=}2.{10}^{2}\mathit{Ns}\mathrm{/}m\) |
|
||
Level |
\(\mathrm{P2}\) |
|
|
\({K}_{\mathit{yx}}\mathrm{=}\mathrm{-}{30.10}^{4}N\mathrm{/}m\) |
|
||
\({c}_{\mathrm{yy}}=8.{10}^{4}\mathrm{Ns}/m\) |
|
||
\({c}_{\mathit{yx}}\mathrm{=}2.{10}^{2}\mathit{Ns}\mathrm{/}m\) |
|
\(\Omega =14000\mathrm{tr}/\mathrm{min}\)
Level |
\(\mathrm{P1}\) |
|
|
\({K}_{\mathit{yx}}\mathrm{=}\mathrm{-}{70.10}^{4}N\mathrm{/}m\) |
|
||
\({c}_{\mathrm{yy}}=7.{10}^{4}\mathrm{Ns}/m\) |
|
||
\({c}_{\mathit{yx}}\mathrm{=}3.{10}^{2}\mathit{Ns}\mathrm{/}m\) |
|
||
Level |
\(\mathrm{P2}\) |
|
|
\({K}_{\mathit{yx}}\mathrm{=}\mathrm{-}{60.10}^{4}N\mathrm{/}m\) |
|
||
\({c}_{\mathrm{yy}}=6.{10}^{4}\mathrm{Ns}/m\) |
|
||
\({c}_{\mathit{yx}}\mathrm{=}3.{10}^{2}\mathit{Ns}\mathrm{/}m\) |
|
1.3. Boundary conditions#
To block rigid body movements in the \(z\) direction, we block the degrees of freedom \(\mathit{DZ}\) and \(\mathit{DRZ}\) at the level node \(\mathrm{B1}\).