2. Benchmark solution#

2.1. Baseline calculation#

A reference NON_REGRESSION is used to test the various quantities calculated at the level of the obstacles.

The calculation procedure is as follows, on:

  • Calculate the modal base,

  • Create an interspectral matrix (or DSP) from complex functions,

  • Generates random efforts,

  • Calculate the transient dynamic response,

  • Test the values of the response (movements and efforts) at the level of obstacles.

2.2. Reference quantity#

Components of the interspectral matrix obtained from complex functions.

2.3. Benchmark result#

Component

Reference

Interspectral matrix

\((\mathrm{1,1})\)

\(0.1000+\mathrm{0.j}\)

\((\mathrm{2,2})\)

\(0.025+\mathrm{0.j}\)

Note:**the behavior of the random number generator (module*RANDOM) has changed since the python version*:math:`2.3`*. The results are a bit affected. For tests on the transient dynamic response, we therefore test with different magnitudes and reference results depending on the Python version. *

Python version lower than \(2.3\)

Grandeur

Component

Point

Reference

DEPL_X

MOYEN

\(D\)

\(0.5m\)

DEPL_Y

ECART_TYPE

\(D\)

\(2.57\times {10}^{-5}m\)

DEPL_RADIAL

RMS

\(D\)

\(2.573\times {10}^{-5}m\)

FORCE_NORMALE

RMS_T_TOTAL

\(D\)

\(25.73N\)

Python version greater than \(2.3\)

Grandeur

Component

Point

Reference

DEPL_X

MOYEN

\(D\)

\(0.5m\)

DEPL_Y

ECART_TYPE

\(D\)

\(2.456\times {10}^{-5}m\)

DEPL_RADIAL

RMS

\(D\)

\(2.456\times {10}^{-5}m\)

FORCE_NORMALE

RMS_T_TOTAL

\(D\)

\(24.56N\)

DEPL_ANGULAIRE

MAXI

\(C\)

\(180.\mathrm{rad}\)

FORCE_TANG_1

MOYEN

\(D\)

\(0.\)

FORCE_TANG_2

ECART_TYPE

\(D\)

\(0.\)

STAT_CHOC

T_ CHOC_MOYEN

\(C\)

\(0.\)

STAT_USURE

PUIS_USURE

\(C\)

\(0.\)