1. Reference problem#
1.1. Geometry#

Geometry of the \((m)\) beam:
\(L=1.5\)
\(R=0.005\)
\({e}_{p}=0.0005\)
Coordinates of points \((m)\):
\(A:(0.0\mathrm{,0}.0\mathrm{,0}.0)\)
\(B:(1.\mathrm{,0}.0\mathrm{,0}.0)\)
\(C:(1.38\mathrm{,0}.0\mathrm{,0}.0)\)
\(D:(1.5\mathrm{,0}.0\mathrm{,0}.0)\)
1.2. Elastic properties of the material#
\(E=2.0E11\mathrm{Pa}\) Young’s module
\(\nu =0.3\) Poisson’s ratio
\(\rho =7900.0{\mathrm{kg.m}}^{-3}\) Density
1.3. Boundary conditions and loads#
Imposed travel:
All knots: \(\mathrm{DRX}=\mathrm{DRY}=\mathrm{DX}=\mathrm{DZ}=0.0\)
Point \(A\): \(\mathrm{DY}=\mathrm{DRZ}=0.0\)
Imposed loading:
Point \(B\): random force according to \(Y\)
Point \(B\): random moment around \(Z\)
Obstacle (CERCLE) at point \(D\):
Game = \(0m\)
standard = \((1.\mathrm{,0}\mathrm{.}\mathrm{,0}\mathrm{.})\)
origin = \((1.\mathrm{,0}\mathrm{.}\mathrm{,0}\mathrm{.})\)
Normal stiffness: \(\mathrm{RIGI}\text{\_}\mathrm{NOR}={10}^{6}N/m\)
Friction COULOMB: \(\mathrm{COULOMB}=0.3\)

Obstacle (DISCRET) at point \(C\):
standard = \((1.\mathrm{,0}\mathrm{.}\mathrm{,0}\mathrm{.})\)
origin = \((1.\mathrm{,0}\mathrm{.}\mathrm{,0}\mathrm{.})\)
Normal stiffness: \(\mathrm{RIGI}\text{\_}\mathrm{NOR}=100.N/m\)
Friction COULOMB: \(\mathrm{COULOMB}=0.3\)

Game1 = \(1.0m\)
Game2 = \(1.5m\)