3. Modeling A#
3.1. Characteristics of modeling#
POU_D_E beam element and DIS_TR discrete element
Cutting: beam \(\mathrm{AB}\): 20 meshes SEG2.
Boundary conditions:
At the \(A\) end node
DDL_IMPO: (NOEUD: A DX: 0., DY: 0., DY: 0., DZ: 0., DRX: 0., DRY: 0., DRZ: 0.)
Nodal mass in \(B\) with an eccentricity |
\(\mathit{ey}\mathrm{=}0.\) |
Case 1 |
\(\mathrm{ey}=1.\) |
Case 2 |
Node names: |
Points |
\(A\mathrm{=}\mathit{N100}\) |
|
3.2. Characteristics of the mesh#
Number of knots: |
21 |
Number of meshes and types: |
20 SEG2 |
3.3. Tested sizes and results#
Case |
Nature of the clean mode |
Frequency Reference |
\(\mathrm{Hz}\) Aster |
% difference |
|
flexure 1.2 |
1.65 |
1.65 |
1.6554 |
0.33 |
|
flex 3.4 |
16.07 |
16.07 |
16.0712 |
||
CAS 1 |
flexure 5.6 |
50.02 |
50.0240 |
||
traction 1 |
76.47 |
76.4727 |
76.4727 |
||
\(\mathrm{yc}=0.\) |
twist 1 |
80.47 |
80.47 |
80.4688 |
|
flexure 7.8 |
103.20 |
103.20444 |
|||
\({f}_{z}+{t}_{o}\) 1 |
1.636 |
1.636 |
1.6363 |
||
\({f}_{y}+{t}_{r}\) 2 |
1.642 |
1.642 |
1.6416 |
||
CAS 2 |
|
13.46 |
13.46 |
13.4551 |
|
\({f}_{z}+{t}_{o}\) 4 |
13.59 |
13.59 |
13.5919 |
||
\(\mathrm{yc}=1.\) |
|
28.90 |
28.90 |
28.8972 |
|
\({f}_{y}+{t}_{r}\) 6 |
31.96 |
31.96 |
31.9594 |
||
\({f}_{z}+{t}_{o}\) 7 |
61.61 |
61.61 |
61.6091 |
||
\({f}_{y}+{t}_{r}\) 8 |
63.93 |
63.93 |
63.9289 |
||
Fashion |
\({\theta }_{\mathit{xB}}\) |
0.03 |
3.039 10—2 |
1.321 |
|
1 |
|
1.030 |
1.030 |
1.030 |
|
2 |
|
—0.148 |
—0.148 |
||
3 |
|
—2.882 |
—2.880 |
0.07 |
|
4 |
|
—0.922 |
—0.923 |
0.108 |
|
5 |
|
—1.922 |
—1.92268 |
0.036 |
with: |
\({f}_{z}+{t}_{o}\mathrm{=}\mathit{flexion}x,z+\mathit{torsion}\) |
|
3.4. notes#
Calculations made by:
OPTION = “PLUS_PETITE” CALC_FREQ =_F (NMAX_FREQ = n) Case 1: n=10, Case 2: n=8 SOLVEUR_MODAL =_F (METHODE = “TRI_DIAG”)
In the test, you cannot check the values of the \(\frac{{u}_{C}}{{v}_{B}}\) ratios for modes 2 and 3 (except manually). As for the values of \(\frac{{w}_{C}}{{w}_{B}}\), the technique is as follows: if we impose \({w}_{B}\mathrm{=}1\) (command NORM_MODE), we then have \(\frac{{w}_{C}}{{w}_{B}}\mathrm{=}1+{\theta }_{\mathit{xB}}\) and we can check the values of \({\theta }_{\mathit{xB}}\).
Contents of the results file:
Case 1:11 first natural frequencies, eigenvectors and modal parameters.
Case 2:9 first natural frequencies, eigenvectors and modal parameters.