3. Modeling A#

3.1. Characteristics of modeling#

POU_D_E beam element and DIS_TR discrete element

_images/1000078C0000170C00000C9CD7E72108490208A3.svg

Cutting: beam \(\mathrm{AB}\): 20 meshes SEG2.

Boundary conditions:

At the \(A\) end node

DDL_IMPO: (NOEUD: A DX: 0., DY: 0., DY: 0., DZ: 0., DRX: 0., DRY: 0., DRZ: 0.)

Nodal mass in \(B\) with an eccentricity

\(\mathit{ey}\mathrm{=}0.\)

Case 1

\(\mathrm{ey}=1.\)

Case 2

Node names:

Points

\(A\mathrm{=}\mathit{N100}\)

\(B=\mathrm{N200}\)

3.2. Characteristics of the mesh#

Number of knots:

21

Number of meshes and types:

20 SEG2

3.3. Tested sizes and results#

Case

Nature of the clean mode

Frequency Reference

\(\mathrm{Hz}\) Aster

% difference

flexure 1.2

1.65

1.65

1.6554

0.33

flex 3.4

16.07

16.07

16.0712

CAS 1

flexure 5.6

50.02

50.0240

traction 1

76.47

76.4727

76.4727

\(\mathrm{yc}=0.\)

twist 1

80.47

80.47

80.4688

flexure 7.8

103.20

103.20444

\({f}_{z}+{t}_{o}\) 1

1.636

1.636

1.6363

\({f}_{y}+{t}_{r}\) 2

1.642

1.642

1.6416

CAS 2

\({f}_{y}+{t}_{r}\) 3

13.46

13.46

13.4551

\({f}_{z}+{t}_{o}\) 4

13.59

13.59

13.5919

\(\mathrm{yc}=1.\)

\({f}_{z}+{t}_{o}\) 5

28.90

28.90

28.8972

\({f}_{y}+{t}_{r}\) 6

31.96

31.96

31.9594

\({f}_{z}+{t}_{o}\) 7

61.61

61.61

61.6091

\({f}_{y}+{t}_{r}\) 8

63.93

63.93

63.9289

Fashion

\({\theta }_{\mathit{xB}}\)

0.03

3.039 10—2

1.321

1

\({w}_{C}\mathrm{/}{w}_{B}\)

1.030

1.030

1.030

2

\({u}_{C}\mathrm{/}{v}_{B}\)

—0.148

—0.148

3

\({u}_{C}/{v}_{B}\)

—2.882

—2.880

0.07

4

\({w}_{C}\mathrm{/}{w}_{B}\)

—0.922

—0.923

0.108

5

\({\theta }_{\mathit{xB}}\)

—1.922

—1.92268

0.036

with:

\({f}_{z}+{t}_{o}\mathrm{=}\mathit{flexion}x,z+\mathit{torsion}\)

\({f}_{y}+{t}_{r}\mathrm{=}\mathit{flexion}x,y+\mathit{traction}\)

3.4. notes#

Calculations made by:

OPTION = “PLUS_PETITE” CALC_FREQ =_F (NMAX_FREQ = n) Case 1: n=10, Case 2: n=8 SOLVEUR_MODAL =_F (METHODE = “TRI_DIAG”)

In the test, you cannot check the values of the \(\frac{{u}_{C}}{{v}_{B}}\) ratios for modes 2 and 3 (except manually). As for the values of \(\frac{{w}_{C}}{{w}_{B}}\), the technique is as follows: if we impose \({w}_{B}\mathrm{=}1\) (command NORM_MODE), we then have \(\frac{{w}_{C}}{{w}_{B}}\mathrm{=}1+{\theta }_{\mathit{xB}}\) and we can check the values of \({\theta }_{\mathit{xB}}\).

Contents of the results file:

Case 1:11 first natural frequencies, eigenvectors and modal parameters.

Case 2:9 first natural frequencies, eigenvectors and modal parameters.