3. Modeling A#
3.1. Characteristics of modeling#
We use Timoshenko’s right beam element: POU_D_T
Problem 1:
Cutting: |
beam \(\mathrm{AB}\): 40 meshes SEG2 |
Boundary conditions: In all the knots in \(A\): in \(B\): |
DDL_IMPO =( GROUP_NO = “AB”, DZ=0., DRX =0, DRY =0.) (NOEUD =”A”, DX=0., D=0.) (NOEUD =”B”, DY=0.) |
Problem 2:
Cutting: |
beam \(\mathrm{AB}\): 40 meshes SEG2 2 rigid elements \(\mathrm{AC}\), \(\mathrm{BC}\): 2 meshes SEG2 |
Boundary conditions: In all the knots in \(C\): in \(D\): |
DDL_IMPO = (TOUT =” OUI “, DZ=0., DRX =0, DRY =0.) (NOEUD =”C”, DX=0., DY=0.) (NOEUD =”D”, DY=0.) |
Node names: |
Point \(A\) = \(\mathrm{N100}\) Point \(B\) = \(\mathrm{N200}\) |
Point \(C\) = \(\mathrm{N300}\) Point \(D\) = \(\mathrm{N400}\) |
3.2. Characteristics of the mesh#
Number of knots: |
43 |
Number of meshes and types: |
42 SEG2 |
3.3. notes#
Definition of rigid beams \(\mathrm{AC}\) and \(\mathrm{BD}\):
Section: \(\mathrm{Hy}=0.2\), \(\mathrm{Hz}=0.2\).
Material: \(E={2.10}^{16}\), \(\rho =0\).
3.4. Tested sizes and results#
Frequency ( \(\mathrm{Hz}\) )
Clean Mode |
Reference |
Aster |
Tolerance |
Problem 1 |
|||
flexure 1 |
431.555 |
431.8916 |
0.2% |
traction 1 |
1265.924 |
1266.0056 |
0.2% |
flexure 2 |
1498.295 |
1500.7635 |
0.2% |
flexure 3 |
2870.661 |
2873.5344 |
0.2% |
traction 2 |
3797.773 |
3799.9692 |
0.2% |
flexure 4 |
4377.837 |
4370.8206 |
0.2% |
Clean Mode |
Reference |
Aster |
Tolerance |
Problem 2 |
|||
1 |
392.8 |
394.4774 |
0.5% |
coupling 2 |
922.2 |
922.6072 |
0.1% |
flexure 3 |
1592.0 |
1638.2311 |
3% |
traction 4 |
2629.2 |
2778.7000 |
5.8% |
compression 5 |
3126.2 |
3261.6699 |
4.5% |
We calculate the kinetic energy of the first beam element connected to point \(A\) of problem 1:
Option |
Component |
Reference ( NON_REGRESSION ) |
Aster |
% difference |
ECIN_ELEM |
|
51366.0 |
51366.027 |
1% |
3.5. notes#
Calculations made by:
Problem 1:
CALC_MODES
OPTION =” AJUSTE “ CALC_FREQ =_F (FREQ =( 430., 4500.))
Problem 2:
CALC_MODES
OPTION =” AJUSTE “ CALC_FREQ =_F (FREQ =( 380., 300.))
Contents of the results file:
Problem 1:
6 first natural frequencies, eigenvectors and modal parameters.
Problem 1:
5 first natural frequencies, eigenvectors and modal parameters.