3. Modeling A#

3.1. Characteristics of modeling#

We use Timoshenko’s right beam element: POU_D_T

_images/100014FE0000297200000A3B2B8B517498B7B1B2.svg

Problem 1:

Cutting:

beam \(\mathrm{AB}\): 40 meshes SEG2

Boundary conditions: In all the knots in \(A\): in \(B\):

DDL_IMPO =( GROUP_NO = “AB”, DZ=0., DRX =0, DRY =0.) (NOEUD =”A”, DX=0., D=0.) (NOEUD =”B”, DY=0.)

Problem 2:

Cutting:

beam \(\mathrm{AB}\): 40 meshes SEG2 2 rigid elements \(\mathrm{AC}\), \(\mathrm{BC}\): 2 meshes SEG2

Boundary conditions: In all the knots in \(C\): in \(D\):

DDL_IMPO = (TOUT =” OUI “, DZ=0., DRX =0, DRY =0.) (NOEUD =”C”, DX=0., DY=0.) (NOEUD =”D”, DY=0.)

Node names:

Point \(A\) = \(\mathrm{N100}\) Point \(B\) = \(\mathrm{N200}\)

Point \(C\) = \(\mathrm{N300}\) Point \(D\) = \(\mathrm{N400}\)

3.2. Characteristics of the mesh#

Number of knots:

43

Number of meshes and types:

42 SEG2

3.3. notes#

Definition of rigid beams \(\mathrm{AC}\) and \(\mathrm{BD}\):

  • Section: \(\mathrm{Hy}=0.2\), \(\mathrm{Hz}=0.2\).

  • Material: \(E={2.10}^{16}\), \(\rho =0\).

3.4. Tested sizes and results#

Frequency ( \(\mathrm{Hz}\) )

Clean Mode

Reference

Aster

Tolerance

Problem 1

flexure 1

431.555

431.8916

0.2%

traction 1

1265.924

1266.0056

0.2%

flexure 2

1498.295

1500.7635

0.2%

flexure 3

2870.661

2873.5344

0.2%

traction 2

3797.773

3799.9692

0.2%

flexure 4

4377.837

4370.8206

0.2%

Clean Mode

Reference

Aster

Tolerance

Problem 2

1

392.8

394.4774

0.5%

coupling 2

922.2

922.6072

0.1%

flexure 3

1592.0

1638.2311

3%

traction 4

2629.2

2778.7000

5.8%

compression 5

3126.2

3261.6699

4.5%

We calculate the kinetic energy of the first beam element connected to point \(A\) of problem 1:

Option

Component

Reference ( NON_REGRESSION )

Aster

% difference

ECIN_ELEM

TOTALE

51366.0

51366.027

1%

3.5. notes#

Calculations made by:

Problem 1:

CALC_MODES

OPTION =” AJUSTE “ CALC_FREQ =_F (FREQ =( 430., 4500.))

Problem 2:

CALC_MODES

OPTION =” AJUSTE “ CALC_FREQ =_F (FREQ =( 380., 300.))

Contents of the results file:

Problem 1:

6 first natural frequencies, eigenvectors and modal parameters.

Problem 1:

5 first natural frequencies, eigenvectors and modal parameters.