3. Modeling A#
3.1. Characteristics of modeling#
Discrete elements of stiffness, damping and mass.
Characteristics of the elements:
DISCRET: |
nodal mass |
M_T_D_N |
linear stiffness |
K_T_D_L (\({k}_{\mathrm{N1N2}}=k/10\), \({k}_{\mathrm{N2N3}}=\mathrm{10k}\)) |
|
linear amortization |
A_T_D_L |
Boundary conditions: at node \(\mathrm{N1}\) DDL_IMPO \(\mathrm{DX}=\mathrm{DY}=\mathrm{DZ}=0\).
Node names: \(A=\mathrm{N1}\), \(C=\mathrm{N2}\), \(B=\mathrm{N3}\).
Calculation methods:
Integration into physical space with Newmark (\(\alpha =\mathrm{0,25}\), \(\delta =\mathrm{0,5}\))
No time \(\Delta t={10}^{-3}s\)
Full modal integration with Euler
No time \(\Delta t={10}^{-3}s\) then modal recombination
Full modal integration with 2nd order adaptive \(\Delta t\)
No initial time \(\Delta t={10}^{-3}s\) then modal recombination
Full modal integration with \(\Delta t\) adaptive using the Runge-Kutta order method (32). Relative error tolerance is \({10}^{-5}\).
Full modal integration with \(\Delta t\) adaptive using the Runge-Kutta order method (54). Relative error tolerance is \({10}^{-6}\).
Observation time: 3 s.
3.2. Characteristics of the mesh#
Number of knots: 3
Number of meshes and type: 2 meshes SEG2
3.3. Tested sizes and results#
Move (\(m\)) from point \(B\)
Time |
Reference |
(\(s\)) |
|
0.27 |
3.0927 E-3 |
0.53 |
8.7953 E-4 |
0.80 |
2.4669 E-3 |
1.25 |
-1.0980 E-3 |
1,51 |
7,8754 E-4 |
1.78 |
-5.6508 E-4 |
2.05 |
4.0502 E-4 |
2.31 |
-2.9012 E-4 |
2.58 |
2.0831 E-4 |
2.85 |
-1.4943 E-4 |
Speed (\({\mathrm{m.s}}^{-1}\)) of point \(B\)
Time |
Reference |
(\(s\)) |
|
0.11 |
1.8347 E-2 |
0.39 |
-1.3140 E-2 |
0.66 |
9.3509 E-3 |
0.93 |
-6.7080 E-3 |
1.11 |
-1.5863 E-2 |
1.37 |
1.1157 E-2 |
1.64 |
-7.9838 E-3 |
1.90 |
5.7108 E-3 |
2.17 |
-4.0998 E-3 |
2.44 |
2.9405 E-3 |
2.71 |
-2.1073 E-3 |
2.97 |
1.5105 E-3 |
3.4. notes#
The results are tested at the level of the respective peaks of movement and speed where the values are the most significant.