1. Reference problem#
1.1. Geometry#
Point masses: |
\({m}_{{P}_{1}}={m}_{{P}_{2}}={m}_{{P}_{3}}=\dots \dots ={m}_{{P}_{8}}=m\) |
Link stiffness: |
\({k}_{\mathrm{AP1}}={k}_{\mathrm{P1P2}}={k}_{\mathrm{P2P3}}=\dots \dots ={k}_{\mathrm{P8B}}=k\) |
Viscous damping: |
\({C}_{\mathrm{P1P2}}={c}_{\mathrm{P2P3}}=\dots \dots ={C}_{\mathrm{P7P8}}=c\) \({C}_{\mathrm{AP1}}=\mathrm{cc}\) \({C}_{\mathrm{P8B}}=\mathrm{cd}\) |
1.2. Material properties#
Linear elastic translation spring |
\(k={10}^{5}N/m\) |
Point mass |
\(m=10\mathrm{kg}\) |
Link damping |
\(c=50N/(m/s)\) |
\(\mathrm{cc}=250N/(m/s)\) |
|
\(\mathrm{cd}=25N/(m/s)\) |
1.3. Boundary conditions and loads#
Embedded \(A\) and \(B\) points: \(u=0\)
Loading: Non-periodic concentrated force at point \(\mathrm{P4}\)
Point \(\mathrm{P4}\) |
\({F}_{{x}_{4}}=F(t)0\le t\le \mathrm{1s}\)
|
\(F(t)=\mathrm{1N}=\mathrm{constante}\)
|
|
1.4. Initial conditions#
For \(t=0\), in every way \({P}_{i}\): \(u=0\), \(\frac{\mathrm{du}}{\mathrm{dt}}=0\).