1. Reference problem#

1.1. Geometry#

_images/10000D520000323B00000C18D8774116216CD7DC.svg

Point masses:

\({m}_{{P}_{1}}={m}_{{P}_{2}}={m}_{{P}_{3}}=\dots \dots ={m}_{{P}_{8}}=m\)

Link stiffness:

\({k}_{\mathrm{AP1}}={k}_{\mathrm{P1P2}}={k}_{\mathrm{P2P3}}=\dots \dots ={k}_{\mathrm{P8B}}=k\)

Viscous damping:

\({C}_{\mathrm{P1P2}}={c}_{\mathrm{P2P3}}=\dots \dots ={C}_{\mathrm{P7P8}}=c\) \({C}_{\mathrm{AP1}}=\mathrm{cc}\) \({C}_{\mathrm{P8B}}=\mathrm{cd}\)

1.2. Material properties#

Linear elastic translation spring

\(k={10}^{5}N/m\)

Point mass

\(m=10\mathrm{kg}\)

Link damping

\(c=50N/(m/s)\)

\(\mathrm{cc}=250N/(m/s)\)

\(\mathrm{cd}=25N/(m/s)\)

1.3. Boundary conditions and loads#

Embedded \(A\) and \(B\) points: \(u=0\)

Loading: Non-periodic concentrated force at point \(\mathrm{P4}\)

_images/100002F000000BE3000009182C742061EEE9F1DE.svg

Point \(\mathrm{P4}\)

\({F}_{{x}_{4}}=F(t)0\le t\le \mathrm{1s}\)

\(t>\mathrm{1s}\)

\(F(t)=\mathrm{1N}=\mathrm{constante}\)

\(F(t)=0\)

1.4. Initial conditions#

For \(t=0\), in every way \({P}_{i}\): \(u=0\), \(\frac{\mathrm{du}}{\mathrm{dt}}=0\).