1. Reference problem#

1.1. Geometry#

_images/100010700000298C0000094DBB4344A8B0BC094F.svg

Point masses:

\({m}_{{P}_{1}}\mathrm{=}{m}_{{P}_{2}}\mathrm{=}{m}_{{P}_{3}}\mathrm{=}\dots \dots \mathrm{=}{m}_{{P}_{8}}\mathrm{=}m\)

Link stiffness:

\({k}_{\mathit{AP1}}\mathrm{=}{k}_{\mathit{P1P2}}\mathrm{=}{k}_{\mathit{P2P3}}\mathrm{=}\dots \dots \mathrm{=}{k}_{\mathit{P8B}}\mathrm{=}k\)

Viscous damping:

\({c}_{\mathit{P1P2}}\mathrm{=}{c}_{\mathit{P2P3}}\mathrm{=}\dots \dots \mathrm{=}{c}_{\mathit{P7P8}}\mathrm{=}c\) \({c}_{\mathit{AP1}}\mathrm{=}\mathit{cc}\) \({c}_{\mathit{P8B}}\mathrm{=}\mathit{cd}\)

1.2. Material properties#

Linear elastic translation spring

\(k\mathrm{=}{10}^{5}N\mathrm{/}m\)

Point mass

\(m\mathrm{=}10\mathit{kg}\)

Unidirectional viscous dampers

\(c\mathrm{=}50N\mathrm{/}(m\mathrm{/}s)\)

\(\mathit{cc}\mathrm{=}250N\mathrm{/}(m\mathrm{/}s)\)

\(\mathit{cd}\mathrm{=}25N\mathrm{/}(m\mathrm{/}s)\)

1.3. Boundary conditions and loads#

Embedded points \(A\) and \(B\): \(u\mathrm{=}0\).

1.4. Initial conditions#

Not applicable for modal analysis.