1. Reference problem#
1.1. Geometry#
Point masses: |
\({m}_{{P}_{1}}\mathrm{=}{m}_{{P}_{2}}\mathrm{=}{m}_{{P}_{3}}\mathrm{=}\dots \dots \mathrm{=}{m}_{{P}_{8}}\mathrm{=}m\) |
Link stiffness: |
\({k}_{\mathit{AP1}}\mathrm{=}{k}_{\mathit{P1P2}}\mathrm{=}{k}_{\mathit{P2P3}}\mathrm{=}\dots \dots \mathrm{=}{k}_{\mathit{P8B}}\mathrm{=}k\) |
Viscous damping: |
\({c}_{\mathit{P1P2}}\mathrm{=}{c}_{\mathit{P2P3}}\mathrm{=}\dots \dots \mathrm{=}{c}_{\mathit{P7P8}}\mathrm{=}c\) \({c}_{\mathit{AP1}}\mathrm{=}\mathit{cc}\) \({c}_{\mathit{P8B}}\mathrm{=}\mathit{cd}\) |
1.2. Material properties#
Linear elastic translation spring |
\(k\mathrm{=}{10}^{5}N\mathrm{/}m\) |
Point mass |
\(m\mathrm{=}10\mathit{kg}\) |
Unidirectional viscous dampers |
\(c\mathrm{=}50N\mathrm{/}(m\mathrm{/}s)\) |
\(\mathit{cc}\mathrm{=}250N\mathrm{/}(m\mathrm{/}s)\) |
|
\(\mathit{cd}\mathrm{=}25N\mathrm{/}(m\mathrm{/}s)\) |
1.3. Boundary conditions and loads#
Embedded points \(A\) and \(B\): \(u\mathrm{=}0\).
1.4. Initial conditions#
Not applicable for modal analysis.