7. E modeling#

7.1. Characteristics of modeling#

Transposition of the reference test to the case of degrees of freedom of rotation (torsion+inertia spring) using the discrete element of translation/rotation stiffness: DIS_TR

_images/10000F1400001AAA000008FEEBA8DA432A18FD92.svg

Characteristics of the elements

Boundary conditions:

DDL_IMPO:

( TOUT:’OUI’    DX: 0., DY: 0., DZ: 0., DRZ: 0. )

LIAISON_DDL:

(telle que :math:`\mathrm{3DRy}\mathrm{=}\mathrm{4DRx}`en tous les nœuds)

Node names: \({P}_{\mathrm{1,}}{P}_{\mathrm{2,}}\mathrm{....},{P}_{8}\)

7.2. Characteristics of the mesh#

Number of knots:

8

Number of meshes and types:

7 SEG2

Nodes \({P}_{1}\) and \({P}_{8}\) are connected to a fixed fictional node by nodal springs (K_ TR_N, A_ TR_N).

7.3. Tested sizes and results#

Frequency

Reference

Clean mode order 1

5.53

Clean mode order 2

10.90

Clean mode order 3

15.93

Clean mode order 4

20.45

Clean mode order 5

24.34

Clean mode order 6

27.49

Clean mode order 7

29.84

Clean mode order 8

31.29

Depreciation

Reference

Clean mode order 1

1.521e—2

Clean mode order 2

2.877e—2

Clean mode order 3

3.960e—2

Clean mode order 4

4.709e—2

Clean mode order 5

5.098e—2

Clean mode order 6

5.183e—2

Clean mode order 7

5.115e—2

Clean mode order 8

5.036e—2

Nature of clean mode

Point

Clean mode Reference in 10 —3 Real part Imaginary part

Rotation 1 (\(\mathit{DRx}\)) \({\Phi }_{1}\)

P1 P2 P3 P4 P5 P6 P7 P8

—2.442, 2.736 —4.782, 4.968 —6.54, 6.6 —7.5, 7.5 —7.5, 7.4 —6.66, 6.54 —4.944, 4.824 —2.646, 2.55

Rotation 8 (\(\mathit{DRx}\)) \({\Phi }_{8}\)

P1 P2 P3 P4 P5 P6 P7 P8

—1.338, 0.684 —2.226, 1.788 —2.85, 2.646 —3.15, 3.162 —3.084, 3.258 —2.664, 2.928 —1.938, 2.214 —0.996, 1.206

Eigenmode standardized to the unit modal mass: \({\phi }_{i}^{t}C{\phi }_{i}+2{\lambda }_{i}{\phi }_{i}^{t}M{\phi }_{i}\mathrm{=}1\)

\(\lambda\): is the eigenvalue associated with damping and natural frequency.

7.4. Contents of the results file#

The 8 damping and natural frequencies, as well as the associated natural vectors.