7. E modeling#
7.1. Characteristics of modeling#
Transposition of the reference test to the case of degrees of freedom of rotation (torsion+inertia spring) using the discrete element of translation/rotation stiffness: DIS_TR
Characteristics of the elements
Boundary conditions:
DDL_IMPO: |
( TOUT:’OUI’ DX: 0., DY: 0., DZ: 0., DRZ: 0. )
|
LIAISON_DDL: |
(telle que :math:`\mathrm{3DRy}\mathrm{=}\mathrm{4DRx}`en tous les nœuds)
|
Node names: \({P}_{\mathrm{1,}}{P}_{\mathrm{2,}}\mathrm{....},{P}_{8}\)
7.2. Characteristics of the mesh#
Number of knots: |
8 |
Number of meshes and types: |
7 SEG2 |
Nodes \({P}_{1}\) and \({P}_{8}\) are connected to a fixed fictional node by nodal springs (K_ TR_N, A_ TR_N).
7.3. Tested sizes and results#
Frequency |
Reference |
Clean mode order 1 |
5.53 |
Clean mode order 2 |
10.90 |
Clean mode order 3 |
15.93 |
Clean mode order 4 |
20.45 |
Clean mode order 5 |
24.34 |
Clean mode order 6 |
27.49 |
Clean mode order 7 |
29.84 |
Clean mode order 8 |
31.29 |
Depreciation |
Reference |
Clean mode order 1 |
1.521e—2 |
Clean mode order 2 |
2.877e—2 |
Clean mode order 3 |
3.960e—2 |
Clean mode order 4 |
4.709e—2 |
Clean mode order 5 |
5.098e—2 |
Clean mode order 6 |
5.183e—2 |
Clean mode order 7 |
5.115e—2 |
Clean mode order 8 |
5.036e—2 |
Nature of clean mode |
Point |
Clean mode Reference in 10 —3 Real part Imaginary part |
Rotation 1 (\(\mathit{DRx}\)) \({\Phi }_{1}\) |
P1 P2 P3 P4 P5 P6 P7 P8 |
—2.442, 2.736 —4.782, 4.968 —6.54, 6.6 —7.5, 7.5 —7.5, 7.4 —6.66, 6.54 —4.944, 4.824 —2.646, 2.55 |
Rotation 8 (\(\mathit{DRx}\)) \({\Phi }_{8}\) |
P1 P2 P3 P4 P5 P6 P7 P8 |
—1.338, 0.684 —2.226, 1.788 —2.85, 2.646 —3.15, 3.162 —3.084, 3.258 —2.664, 2.928 —1.938, 2.214 —0.996, 1.206 |
Eigenmode standardized to the unit modal mass: \({\phi }_{i}^{t}C{\phi }_{i}+2{\lambda }_{i}{\phi }_{i}^{t}M{\phi }_{i}\mathrm{=}1\)
\(\lambda\): is the eigenvalue associated with damping and natural frequency.
7.4. Contents of the results file#
The 8 damping and natural frequencies, as well as the associated natural vectors.