1. Reference problem#
1.1. Geometry#
Point masses: |
\({m}_{{P}_{1}}={m}_{{P}_{2}}={m}_{{P}_{3}}=\dots \dots ={m}_{{P}_{8}}=m\) |
Link stiffness: |
\({k}_{\mathrm{AP1}}={k}_{\mathrm{P1P2}}={k}_{\mathrm{P2P3}}=\dots \dots ={k}_{\mathrm{P8B}}=k\) |
Viscous damping: |
\({c}_{\mathrm{AP1}}={c}_{\mathrm{P1P2}}={c}_{\mathrm{P2P3}}=\dots \dots ={c}_{\mathrm{P8B}}=c\) |
1.2. Material properties#
Linear elastic translation spring |
\(k={10}^{5}N/m\) |
Point mass |
\(m=10\mathrm{Kg}\) |
Unidirectional viscous damping |
\(c=50N/(m/s)\) |
1.3. Boundary conditions and loads#
Boundary conditions:
Points \(A\) and \(B\): recessed \((u=0)\).
Loading: Sinusoidal concentrated force with variable frequency at point \({P}_{4}\)
Point \({P}_{4}\) |
|
|
\({F}_{0}\mathrm{=}\mathit{constante}\mathrm{=}\mathrm{1N}\) |
||
Other points \({P}_{i}\) |
|
1.4. Initial conditions#
Not applicable to the study of the permanent harmonic regime.