Reference problem ===================== Geometry --------- .. image:: images/100011200000298C0000094D11B1F3F93BC4BD8E.svg :width: 536 :height: 120 .. _RefImage_100011200000298C0000094D11B1F3F93BC4BD8E.svg: .. csv-table:: "Point masses:", ":math:`{m}_{{P}_{1}}={m}_{{P}_{2}}={m}_{{P}_{3}}=\dots \dots ={m}_{{P}_{8}}=m`" "Link stiffness:", ":math:`{k}_{\mathrm{AP1}}={k}_{\mathrm{P1P2}}={k}_{\mathrm{P2P3}}=\dots \dots ={k}_{\mathrm{P8B}}=k`" "Viscous damping:", ":math:`{c}_{\mathrm{AP1}}={c}_{\mathrm{P1P2}}={c}_{\mathrm{P2P3}}=\dots \dots ={c}_{\mathrm{P8B}}=c`" Material properties ----------------------- .. csv-table:: "Linear elastic translation spring", ":math:`k={10}^{5}N/m`" "Point mass", ":math:`m=10\mathrm{Kg}`" "Unidirectional viscous damping", ":math:`c=50N/(m/s)`" Boundary conditions and loads ------------------------------------- Boundary conditions: Points :math:`A` and :math:`B`: recessed :math:`(u=0)`. Loading: Sinusoidal concentrated force with variable frequency at point :math:`{P}_{4}` .. csv-table:: "Point :math:`{P}_{4}` "," :math:`{F}_{{x}_{4}}\mathrm{=}{F}_{0}\mathrm{sin}\Omega t` "," :math:`\Omega \mathrm{=}2\pi f` :math:`5\mathrm{Hz}\le f\le 40\mathrm{Hz}`" "", "", ":math:`{F}_{0}\mathrm{=}\mathit{constante}\mathrm{=}\mathrm{1N}`" "Other points :math:`{P}_{i}` "," :math:`{f}_{{x}_{i}}=0` ", "" Initial conditions -------------------- Not applicable to the study of the permanent harmonic regime.