1. Reference problem#
1.1. Description#
This test case comes from sheet 26795 reporting a sudden stop in Hujeux’s law due to a segmentation error in a study of the construction by layers of an embankment dam.
It reproduces on a material point the loading path that caused the crash. This loading path leads to the failure of local Newton iterations and activates a heuristic mechanism for restarting the resolution.
1.2. Material properties#
1.2.1. Elastic properties of the material#
The material is of the type of dense sand. The elastic properties are:
Young’s modulus: \(E=2029431300.40069\mathit{Pa}\)
Poisson’s ratio: \(\mathrm{\nu }=0.45\)
The anelastic properties (Humjeux) are:
power of the nonlinear elastic law: \({n}_{e}=0\)
\(\mathrm{\beta }=200\)
\(d=3.5\)
\(b=0.6\)
friction angle: \(\mathrm{\phi }=40°\)
angle of expansion: \(\mathrm{\psi }=30°\)
critical pressure: \({P}_{c0}=-\mathrm{2,24}\mathit{MPa}\)
reference pressure: \({P}_{\mathit{ref}}=-1\mathit{MPa}\)
elastic radius of the isotropic mechanism: \({r}_{\mathit{éla}}^{s}=0.01\)
elastic radius of the deviatory mechanism: \({r}_{\mathit{éla}}^{d}=0.01\)
\({a}_{\mathit{mon}}=0.03\)
\({a}_{\mathit{cyc}}=0.00001\)
\({c}_{\mathit{mon}}=0.0003\)
\({c}_{\mathit{cyc}}=0.0003\)
\({r}_{\mathit{hys}}=0.1\)
\({r}_{\mathit{mob}}=0.9\)
\({x}_{m}=2\)
\(\text{dila}=1\)
1.3. Initial conditions and mechanical loading#
1.3.1. Initial conditions#
The initial deformation conditions are as follows:
\(\mathit{EPXX}0=-1.350354802792579E-021\)
\(\mathit{EPYY}0=-3.980032078861482E-007\)
\(\mathit{EPZZ}0=0\)
\(\mathit{EPXY}0=\frac{8.492341581286122E-008}{\sqrt{2}}\)
\(\mathit{EPXZ}0=0\)
\(\mathit{EPYZ}0=0\)
The initial stress conditions are as follows:
\(\mathit{SIXX}0=-125\mathit{kPa}\)
\(\mathit{SIYY}0=-125\mathit{kPa}\)
\(\mathit{SIZZ}0=-125\mathit{kPa}\)
\(\mathit{SIXY}0=0\)
\(\mathit{SIXZ}0=0\)
\(\mathit{SIYZ}0=0\)
The initial internal variables are zero.
1.3.2. Loading#
The deformation increment applied is as follows:
\(\mathrm{\Delta }\mathit{EPXX}=7.372770706199615E-006\)
\(\mathrm{\Delta }\mathit{EPYY}=4.632919275111915E-005\)
\(\mathrm{\Delta }\mathit{EPZZ}=0\)
\(\mathrm{\Delta }\mathit{EPXY}=\frac{1.733367998412452E-006}{\sqrt{2}}\)
\(\mathrm{\Delta }\mathit{EPXZ}=0\)
\(\mathrm{\Delta }\mathit{EPYZ}=0\)