Reference problem ===================== Description ----------- This test case comes from sheet 26795 reporting a sudden stop in Hujeux's law due to a segmentation error in a study of the construction by layers of an embankment dam. It reproduces on a material point the loading path that caused the crash. This loading path leads to the failure of local Newton iterations and activates a heuristic mechanism for restarting the resolution. Material properties ------------------------ Elastic properties of the material ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The material is of the type of dense sand. The elastic properties are: * Young's modulus: :math:`E=2029431300.40069\mathit{Pa}` * Poisson's ratio: :math:`\mathrm{\nu }=0.45` The anelastic properties (Humjeux) are: * power of the nonlinear elastic law: :math:`{n}_{e}=0` * :math:`\mathrm{\beta }=200` * :math:`d=3.5` * :math:`b=0.6` * friction angle: :math:`\mathrm{\phi }=40°` * angle of expansion: :math:`\mathrm{\psi }=30°` * critical pressure: :math:`{P}_{c0}=-\mathrm{2,24}\mathit{MPa}` * reference pressure: :math:`{P}_{\mathit{ref}}=-1\mathit{MPa}` * elastic radius of the isotropic mechanism: :math:`{r}_{\mathit{éla}}^{s}=0.01` * elastic radius of the deviatory mechanism: :math:`{r}_{\mathit{éla}}^{d}=0.01` * :math:`{a}_{\mathit{mon}}=0.03` * :math:`{a}_{\mathit{cyc}}=0.00001` * :math:`{c}_{\mathit{mon}}=0.0003` * :math:`{c}_{\mathit{cyc}}=0.0003` * :math:`{r}_{\mathit{hys}}=0.1` * :math:`{r}_{\mathit{mob}}=0.9` * :math:`{x}_{m}=2` * :math:`\text{dila}=1` Initial conditions and mechanical loading -------------------------------------------- Initial conditions ~~~~~~~~~~~~~~~~~~~~~ The initial deformation conditions are as follows: * :math:`\mathit{EPXX}0=-1.350354802792579E-021` * :math:`\mathit{EPYY}0=-3.980032078861482E-007` * :math:`\mathit{EPZZ}0=0` * :math:`\mathit{EPXY}0=\frac{8.492341581286122E-008}{\sqrt{2}}` * :math:`\mathit{EPXZ}0=0` * :math:`\mathit{EPYZ}0=0` The initial stress conditions are as follows: * :math:`\mathit{SIXX}0=-125\mathit{kPa}` * :math:`\mathit{SIYY}0=-125\mathit{kPa}` * :math:`\mathit{SIZZ}0=-125\mathit{kPa}` * :math:`\mathit{SIXY}0=0` * :math:`\mathit{SIXZ}0=0` * :math:`\mathit{SIYZ}0=0` The initial internal variables are zero. Loading ~~~~~~~~~~ The deformation increment applied is as follows: * :math:`\mathrm{\Delta }\mathit{EPXX}=7.372770706199615E-006` * :math:`\mathrm{\Delta }\mathit{EPYY}=4.632919275111915E-005` * :math:`\mathrm{\Delta }\mathit{EPZZ}=0` * :math:`\mathrm{\Delta }\mathit{EPXY}=\frac{1.733367998412452E-006}{\sqrt{2}}` * :math:`\mathrm{\Delta }\mathit{EPXZ}=0` * :math:`\mathrm{\Delta }\mathit{EPYZ}=0`