2. B modeling#

2.1. But#

In this modeling, we want to validate the use of spring mats with zero length DIS_T elements. The feature is already validated for zero-length DIS_TR elements. So that provides the reference values.

2.2. Description#

A structure in the form of a parallelepiped composed of a single element rests on a carpet consisting here of 4 springs. A constant force is imposed on a vertex node of cube \(\mathit{XY}0\) (with components in the 3 directions of space). We then check that the displacement values at node \(\mathit{XY}0\) are the same with modeling DIS_T as with modeling DIS_TR (reference).

_images/10000201000001D50000011F9622E5E7A4F95123.png

2.2.1. Geometry#

2.2.2. Material parameters#

Structure:

Young’s module: \(30000\mathit{MPa}\)

Poisson’s ratio: \(0.3\)

Density: \(2500\mathit{kg}/{m}^{3}\)

Springs:

GROUP_NO

Stiffers

Dampening

DIS_TR

1E6,1E6,1E6,2.5E6,2.5E5,2.5E5,5.E5

1E3, 1E3, 1E3, 1E3, 2.5E2, 2.5E2, 5.E2

DIS_T

1E6,1E6,1E6

1E3,1E3,1E3

Note: The rotation values on the DIS_TR given to RIGI_PARASOL in this specific case allow the rotation values to be zero on each element of the spring belt.

2.2.3. Loads#

The following constant forces are imposed on node \(\mathit{XY}0\):

  • \(\mathit{FX}=1000N\)

  • \(\mathit{FY}=2000N\)

  • \(\mathit{FZ}=-3000N\)

2.3. Tested values#

We test the values at the final moment: \(0.5s\)

GROUP_NO

NUME_ORDRE

Component

Reference

Reference Value

XY0

4331

\(\mathit{DX}\)

AUTRE_ASTER

-0.00210267324236

XY0

4331

\(\mathit{DY}\)

AUTRE_ASTER

0.00175325119557

XY0

4331

\(\mathit{DZ}\)

AUTRE_ASTER

-0.00691531181833