1. Reference problem#

1.1. Geometry#

Coordinates of points \((m)\):

\(A:(0.,0.)\)

\(B:(1.,0.)\)

\(C:(1.,1.)\)

\(D:(0.\mathrm{,1}\mathrm{.})\)

1.2. Material properties#

  • Mechanics

\(E=1.N/{m}^{2}\)

\(\nu =0.\)

\(\alpha =1.°{C}^{-1}\)

  • Thermal

\(\lambda =1.w/m/°C\)

\(\rho \mathit{cp}\mathrm{=}1.J\mathrm{/}{m}^{3}°C\)

1.3. Boundary conditions and loads#

  • Compulsory trips:

  • \(A\): \(\mathrm{DX}=\mathrm{DY}=0.\)

  • \(B\): \(\mathrm{DY}=0.\)

  • Imposed thermal load:

Two homogeneous thermal evolutions in space are defined:

\(\mathrm{ch1}\) is a rise in temperature from 10 degrees to 17 degrees \([0.,0.7s]\)

\(\mathrm{ch2}\) is a drop in temperature from 17 degrees to 14 degrees \([0.,0.3s]\)

Cycle \([\mathrm{ch1}+\mathrm{ch2}]\) is staggered to form the interval \([1.5,2.5s]\). This cycle is repeated periodically and the mechanical calculation is performed over the interval \([0.5,4.5s]\).