4. Bibliography#

    1. LUBLINER, « Plasticity Theory », MacMillan, New York, 1990.

    1. LEMAITRE, J.L. CHABOCHE, « Mechanics of damage »,

    1. IBRAHIMBEGOVIC, D. MARKOVIC, F. GATUINGT, « Constitutive model of coupled damage-plasticity and its finite element implementation », Eur. J. Finite Elem., 12 (4), 2003, p. 381-405.

    1. MARKOVIC, A. IBRAHIMBEGOVIC, « Complementary energy based FE modelling of coupled elasto-plastic and damage behavior for continuum microstructure computations », Comp. Methods Appl. Engrg., 195, 2006, p. 5077-5093.

    1. MARKOVIC, « Multi-scale modeling of heterogeneous structures with non-linear anelastic behaviors », thesis ENS by Cachan, 2004, available on

    `http://tel.archives-ouvertes.fr/tel-00133643`_(version < http://tel.archives-ouvertes.fr/tel-00133643> pdf) and in office V015 (paper version).

  1. S.Moulin. Modeling of reinforced concrete structures under seismic loading. Note HT-62/04/025/A, 12/2004.

  2. S.Moulin. F. VOLDOIRE Study of a reinforced concrete beam under flexural loading. Note HT-62/05/013/A, 9/2006.

  3. [V6.05.106] SSNS106 — Damaging a flat plate under various stresses with the law of behavior GLRC_DM.

  4. [R3.07.03] — Plate elements DKT, DST, DKQ,, DSQ, and Q4G.

  5. [R7.01.31] — Reinforced concrete plate behavior law GLRC_DAMAGE.

  6. [R7.01.32] — Reinforced concrete plate behavior law GLRC_DM.

  7. [R5.03.03] — Taking into account the hypothesis of plane constraints in non-linear behaviors.

  8. [R5.03.02] — Integration of von Mises elasto-plastic behavior relationships.

  9. [R7.01.09] — Behaviour law ENDO_ORTH_BETON.

  10. [R7.01.19] — Modeling the creep/plasticity coupling for concrete.