1. Ratings#

1.1. Generalities#

\(\sigma\) refers to the effective stress tensor in small disturbances, noted in the form of the following vector:

\((\begin{array}{c}{\sigma }_{\text{11}}\\ {\sigma }_{\text{22}}\\ {\sigma }_{\text{33}}\\ \sqrt{2}{\sigma }_{\text{12}}\\ \sqrt{2}{\sigma }_{\text{13}}\\ \sqrt{2}{\sigma }_{\text{23}}\end{array})\)

We note:

\({I}_{1}\mathrm{=}\text{tr}(\sigma )\)

first constraint invariant

\(s\mathrm{=}\sigma \mathrm{-}\frac{{I}_{1}}{3}I\)

deviatory stress tensor

\({s}_{\mathit{II}}\mathrm{=}\sqrt{s\mathrm{.}s}\)

second invariant of the deviatory stress tensor

\({\sigma }_{\text{max}}\)

major main constraint

\({\sigma }_{\text{min}}\)

minor main constraint

\(\tilde{\varepsilon }\mathrm{=}\varepsilon \mathrm{-}\frac{\text{Tr}(\varepsilon )}{3}I\)

deformation deviator

\({\varepsilon }_{V}\mathrm{=}\text{tr}(\varepsilon )\)

volume deformation

\(\text{cos}(3\theta )\mathrm{=}{2}^{1\mathrm{/}2}{3}^{3\mathrm{/}2}\frac{\text{det}(s)}{{s}_{\text{II}}^{3}}\)

\(\theta\) being the Lode angle

\({\dot{\gamma }}_{p}\mathrm{=}\sqrt{\frac{2}{3}{\tilde{\dot{\varepsilon }}}_{\text{ij}}^{p}{\tilde{\dot{\varepsilon }}}_{\text{ij}}^{p}}\)

cumulative plastic deviatory deformations

\({\dot{\gamma }}_{\text{vp}}\mathrm{=}\sqrt{\frac{2}{3}{\tilde{\dot{\varepsilon }}}_{\text{ij}}^{\text{vp}}{\tilde{\dot{\varepsilon }}}_{\text{ij}}^{\text{vp}}}\)

cumulative viscoplastic deviatory deformations

\({\xi }_{p}\)

plastic work hardening parameter

\({\xi }_{\text{vp}}\)

viscoplastic work hardening parameter

\({G}^{\text{visc}}\)

function controlling the evolution of viscous deformations and describing the flow direction

\(\tilde{G}\mathrm{=}G\mathrm{-}\frac{\text{Tr}(G)}{3}I\)

\(G\) deviator

\(G\mathrm{=}\text{Tr}(G)\)

trace of \(G\)

\({\tilde{G}}_{\mathit{II}}\mathrm{=}\sqrt{\tilde{G}\mathrm{\cdot }\tilde{G}}\)

\(\tilde{G}\) standard

\(\psi\)

angle of dilatance

\({f}^{d}\)

elastoplastic load surface

\({f}^{\text{vp}}\)

viscoplastic load surface

1.2. Sign convention#

  • In Code_Aster, the sign convention is that of the mechanics of continuous media:

In compression: \(\sigma <0\); \(\varepsilon \mathrm{=}\frac{\mathrm{\partial }u}{\mathrm{\partial }x}<0\)

In traction: \(\sigma >0\); \(\varepsilon \mathrm{=}\frac{\mathrm{\partial }u}{\mathrm{\partial }x}>0\)

  • In model LETK, the sign convention is that of soil mechanics:

In compression: \(\sigma >0\)

Contract: \({\varepsilon }_{v}>0\)

In traction: \(\sigma <0\)

Distance: \({\varepsilon }_{v}<0\)

Note:

To integrate this law in*Code_Aster* as it stands, you must change the sign of all fields at the input of the routine corresponding to the law of behavior and at its output.

At the start of the routine:

\(\begin{array}{c}{\sigma }_{\text{L\&K}}^{\mathrm{-}}\mathrm{=}\mathrm{-}{\sigma }^{\mathrm{-}}\\ {\varepsilon }_{\text{L\&K}}^{\mathrm{-}}\mathrm{=}\mathrm{-}{\varepsilon }^{\mathrm{-}}\\ \Delta {\varepsilon }_{\text{L\&K}}\mathrm{=}\mathrm{-}\Delta \varepsilon \end{array}\)

At the end of the routine:

\(\begin{array}{c}\sigma \mathrm{=}\mathrm{-}{\sigma }_{\text{L\&K}}\\ \varepsilon \mathrm{=}\mathrm{-}{\varepsilon }_{\text{L\&K}}\\ \Delta \varepsilon \mathrm{=}\mathrm{-}\Delta {\varepsilon }_{\text{L\&K}}\end{array}\)

1.3. Model parameters#

Notion

Description

\({P}_{a}\)

atmospheric pressure

\({\sigma }_{c}\)

resistance in simple compression, intervening in the expression of the criteria

\({H}_{0}^{\text{ext}}\)

parameter controlling the resistance in extension, intervening in the expression of the criteria

\({\sigma }_{\text{point1}}\)

\({\sigma }_{\text{min}}\) of the intersection between peak and intermediate thresholds

\({x}_{\text{ams}}\)

non-zero parameter involved in pre-peak work hardening laws

\(\eta\)

non-zero parameter involved in post-peak work hardening laws

\({a}_{0}\)

value of \(a\) on the damage threshold

\({m}_{0}\)

value of \(m\) on the damage threshold

\({s}_{0}\)

value of s on the damage threshold

\({a}_{\text{pic}}\)

value of \(a\) on the peak threshold

\({m}_{\text{pic}}\)

value of m on the peak threshold

\({\xi }_{\text{pic}}\)

level of work hardening required at \({\xi }_{p}\) to reach the peak threshold

\({a}_{e}\)

value of \(a\) on the cleavage threshold

\({m}_{e}\)

value of \(m\) on the cleavage threshold

\({\xi }_{e}\)

level of work hardening required at \({\xi }_{p}\) to reach the cleavage threshold

\({m}_{\text{ult}}\)

value of \(m\) on the residual threshold

\({\xi }_{\text{ult}}\)

level of work hardening required at \({\xi }_{p}\) to reach the residual threshold

\({m}_{v\mathrm{-}\text{max}}\)

value of \(m\) on the maximum viscoplastic threshold

\({\xi }_{v\mathrm{-}\text{max}}\)

value of \({\xi }_{v}\) for which the maximum viscoplastic criterion is reached

\({A}_{v}\)

parameter characterizing the amplitude of the creep speed

\({n}_{v}\)

exponent involved in the formula controlling the creep kinetics

\({\mu }_{\mathrm{0,}v}\)

parameter relating to pre-peak dilatance

\({\xi }_{\mathrm{0,}v}\)

parameter relating to pre-peak dilatance

\({\mu }_{1}\)

parameter relating to the dilatance in post peak

\({\xi }_{1}\)

parameter relating to post-peak dilatance