1. Notations#

\(\sigma\) refers to the effective stress tensor in small disturbances, noted in the form of the following vector:

\(\begin{array}{c}{\sigma }_{11}\\ {\sigma }_{22}\\ {\sigma }_{33}\\ \sqrt{2}{\sigma }_{12}\\ \sqrt{2}{\sigma }_{13}\\ \sqrt{2}{\sigma }_{23}\end{array}\)

We note:

\({D}^{e}\)

elasticity tensor

\({I}_{1}=\text{tr}(\sigma )\)

first constraint invariant

\(s=\sigma -\frac{{I}_{1}}{3}\mathrm{Id}\)

deviatory stress tensor

\({s}_{\mathrm{II}}=\sqrt{s\mathrm{.}s}\)

second invariant of the deviatory stress tensor

\({\sigma }_{\text{eq}}\mathrm{=}\sqrt{\frac{3}{2}{s}_{\mathit{ij}}{s}_{\mathit{ij}}}\)

equivalent stress

\({I}_{1}^{\mathrm{el}}\)

elastic stress prediction trace

\({s}^{\mathrm{el}}={\sigma }^{\mathrm{el}}-\frac{{I}_{1}^{\mathrm{el}}}{3}\mathrm{Id}\)

deviatory stress tensor for elastic stress prediction

\({\sigma }_{\text{eq}}^{\mathit{el}}\mathrm{=}\sqrt{\frac{3}{2}{s}_{\mathit{ij}}^{\mathit{el}}{s}_{\mathit{ij}}^{\mathit{el}}}\)

equivalent stress of elastic stress prediction

\(\tilde{\varepsilon }=\varepsilon -\frac{\text{tr}(\varepsilon )}{3}\mathrm{Id}\)

deformation deviator

\({\varepsilon }_{v}=\text{tr}(\varepsilon )\)

volume deformation

\(\dot{p}=\sqrt{\frac{2}{3}{\dot{\tilde{\varepsilon }}}_{\mathrm{ij}}^{\text{vp}}{\dot{\tilde{\varepsilon }}}_{\mathrm{ij}}^{\text{vp}}}\)

cumulative viscoplastic deviatory deformations

\(f\)

viscoplastic load surface

\(G\)

viscoplastic flow potential

\({\alpha }_{0}\), \({R}_{0}\) and \({\beta }_{0}\)

work-hardening parameters corresponding to the elasticity threshold (\(p\mathrm{=}0\))

\({\alpha }_{\text{pic}}\), \({R}_{\text{pic}}\) and \({\beta }_{\text{pic}}\)

work-hardening parameters corresponding to peak \((p\mathrm{=}{p}_{\mathit{pic}})\)

\({\alpha }_{\text{ult}}\), \({R}_{\text{ult}}\) and \({\beta }_{\text{ult}}\)

work-hardening parameters corresponding to the ultimate threshold \((p\mathrm{=}{p}_{\mathit{ult}})\)

\(\Phi\)

magnitude of the speed of irreversible deformations

\(A\)

creep parameter

\(n\)

power of the law of creep

\({P}_{\mathit{ref}}\)

reference pressure