7. Resolution algorithm#

7.1. Nonlinear algorithm for solving balance equations#

In the general case of modeling (variable coefficients, desaturation, convection) the variational problem presented above [éq 4.1-1] to [éq 4.3-1] is non-linear with respect to the displacement fields, pressure and temperature. After discretization by finite elements, a nonlinear matrix system is obtained. The tangent operator matrix also contains a non-symmetric term treated as such. In all modeling cases, the nonlinear solver STAT_NON_LINE based on a Newton-Raphson method, described in [bib5], is used. We introduce the vector functional:

\(F(U)=R(U)-{L}^{\mathrm{meca}}\) eq 7.1-1

The associated tangent operator is noted: \(DF=\frac{\partial F}{\partial U}\).

For modules THM, which are the subject of this note, the \({L}^{\text{meca}}\) operator does not depend on generalized movements. All the terms that depend on generalized movements have been introduced in \(R\), and that is precisely why displacements are found in generalized deformations. In this regard, note the very particular treatment of the term \({\int }_{\Omega }r{F}^{m}\text{.}v\) in equation [éq 4.1-1].

Based on [éq 6.3.4-1], \({\int }_{\Omega }r{F}^{m}\text{.}vd\Omega ={\int }_{\Omega }({r}_{0}+{m}_{1}^{1+}+{m}_{1}^{2+}+{m}_{2}^{1+}+{m}_{2}^{2+}){F}^{m}\text{.}vd\Omega\).

We have chosen to split this term in two:

The term \({\int }_{\Omega }{r}_{0}{F}^{m}\text{.}vd\Omega\) is a contribution to \({L}^{\mathrm{meca}}\) if the user has entered the operand PESANTEUR of the load used (defined by the command AFFE_CHAR_MECA), while the term \({\int }_{\Omega }({m}_{1}^{1+}+{m}_{1}^{2+}+{m}_{2}^{1+}+{m}_{2}^{2+}){F}^{m}\text{.}vd\Omega\), which depends on generalized constraints, is a contribution to \(\mathrm{R}\).

7.2. Transition from nodal values to values at Gauss points#

As in all finite element codes, the terms are calculated by looping over the elements and looping over the gauss points. By noting \({R}_{g}^{\mathrm{el}}\) and \(D{F}_{g}^{\mathrm{el}}\) the values at the Gauss point \(g\) of the element \(\mathrm{el}\) of the nodal forces and the tangent operator, and \({w}_{g}^{\mathrm{el}}\) the integration weight related to this Gauss point, we have:

\(R(U)=\sum _{\mathrm{el}}\sum _{g}{w}_{g}^{\mathrm{el}}{R}_{g}^{\mathrm{el}}(U)\) eq 7.2-1

\(DF(U)=\sum _{\mathrm{el}}\sum _{g}{w}_{g}^{\mathrm{el}}D{F}_{g}^{\mathrm{el}}(U)\) eq 7.2-2

Let us then denote \({U}^{\mathrm{el}}\) the vector of nodal unknowns on a finite element \(\mathrm{el}\). We can thus have:

\(\text{par exemple}{U}^{\mathrm{el}}=\begin{array}{c}\begin{array}{c}u\\ v\\ w\\ {p}_{1}\\ {p}_{2}\\ T\end{array}\}\text{noeud 1}\\ \begin{array}{c}u\\ v\\ w\\ {p}_{1}\\ {p}_{2}\\ T\end{array}\}\text{noeud 2}\\ \begin{array}{c}u\\ v\\ w\\ {p}_{1}\\ {p}_{2}\\ T\end{array}\}\text{noeud 3}\end{array}\).

Let’s also note \({E}_{g}^{\mathrm{el}}\) the vector of generalized deformations at the Gauss point \(g\) of the element \(\mathrm{el}\) and \({\Sigma }_{g}^{\mathrm{el}}\) the generalized stress vector for the Gauss point \(g\) of the element \(\mathrm{el}\). In the most complete case we thus have:

\({E}_{g}^{\mathrm{el}}={\left\{\begin{array}{c}u\\ \varepsilon (u)\\ {p}_{1}\\ \nabla {p}_{1}\\ {p}_{2}\\ \nabla {p}_{2}\\ T\\ \nabla T\end{array}\right\}}_{g}^{\mathrm{el}};{\Sigma }_{g}^{\mathrm{el}}={\left\{\begin{array}{c}\sigma \text{'}\\ {\sigma }_{p}\\ {m}_{1}^{1}\\ {M}_{1}^{1}\\ {h}^{{m}_{1}^{1}}\\ {m}_{1}^{2}\\ {M}_{1}^{2}\\ {h}^{{m}_{1}^{2}}\\ {m}_{2}^{1}\\ {M}_{2}^{1}\\ {h}^{{m}_{2}^{1}}\\ {m}_{2}^{2}\\ {M}_{2}^{2}\\ {h}^{{m}_{2}^{2}}\\ Q\text{'}\\ q\end{array}\right\}}_{g}^{\mathrm{el}}\)

The finite element shape functions then make it possible to calculate the matrix \({Q}_{g}^{\mathrm{el}}\) for the transition from nodal unknowns to generalized deformations at Gauss points defined by:

\({E}_{g}^{\mathrm{el}}={Q}_{g}^{\mathrm{el}}\text{.}{U}_{g}^{\mathrm{el}}\) eq 7.2-3

7.3. Vectors and matrices according to the options#

The presentations of the following two paragraphs are made in the most general case where we have a mechanical equation, two hydraulic equations and a thermal equation. Clues \(g\) and \(\mathrm{el}\) are now omitted, but it’s clear that what’s being described applies to every Gauss point in each element.

7.3.1. Residue or nodal force: options RAPH_MECA and FULL_MECA#

The terms of the variational formulation are divided according to the following principle:

If \({E}_{g}^{\text{*}\mathrm{el}}\) designates a virtual deformation field, \({E}_{g}^{\text{*}\mathrm{el}}=(v,\varepsilon (v),{\pi }_{1},\nabla {\pi }_{1},{\pi }_{2},\nabla {\pi }_{2},\tau ,\nabla \tau )\) calculated from a virtual nodal displacement vector \({U}^{\text{*}\mathrm{el}}\), we can define: \({E}_{g}^{\text{*}\mathrm{el}T}\text{.}{\overline{\Sigma }}_{g}^{\mathrm{el}}(U)={\overline{\Sigma }}_{1}v+{\overline{\Sigma }}_{2}(v)+{\overline{\Sigma }}_{3}{\pi }_{1}+{\overline{\Sigma }}_{4}\nabla {\pi }_{1}+{\overline{\Sigma }}_{5}{\pi }_{2}+{\overline{\Sigma }}_{6}\nabla {\pi }_{2}+{\overline{\Sigma }}_{7}\tau +{\overline{\Sigma }}_{8}\nabla \tau\). We then use the discrete variational formulations [éq 5.1-1], [éq 5.2-1], [éq 5.3-1], and replace the integrals \({\int }_{\Omega }fd\Omega\) by \(\sum _{\mathrm{el}}\sum _{g}{w}_{g}^{\mathrm{el}}{f}_{g}^{\mathrm{el}}\) for all integrants \(f\). We distinguish the terms multiplying \(v\), \(\varepsilon (v)\), respectively, \({\pi }_{1}\),,, \(\nabla {\pi }_{1}\),, \({\pi }_{2}\), \(\nabla {\pi }_{2}\), \(\tau\) and \(\nabla \tau\), and we find:

Index

\(\overline{\Sigma }\)

associated with

1

\(-({m}_{1}^{1+}+{m}_{1}^{2+}+{m}_{2}^{1+}+{m}_{2}^{2+}){F}^{m+}\)

\(v\)

2

\(\sigma {\text{'}}^{+}+{\sigma }_{p}^{+}I\)

\(\varepsilon (v)\)

3

\(-{m}_{1}^{1+}-{m}_{1}^{2+}+{m}_{1}^{1-}+{m}_{1}^{2-}\)

\({\pi }_{1}\)

4

\(\theta \Delta t ({M}_{1}^{1+}+{M}_{1}^{2+})+(1-\theta )\Delta t ({M}_{1}^{1-}+{M}_{1}^{2-})\)

\(\nabla {\pi }_{1}\)

5

\(-{m}_{2}^{1+}-{m}_{2}^{2+}+{m}_{2}^{1-}+{m}_{2}^{2-}\)

\({\pi }_{2}\)

6

\(\theta \Delta t ({M}_{2}^{1+}+{M}_{2}^{2+})+(1-\theta )\Delta t ({M}_{2}^{1-}+{M}_{2}^{2-})\)

\(\nabla {\pi }_{2}\)

7

\(\begin{array}{}-Q{\text{'}}^{+}+Q{\text{'}}^{-}\\ -(\theta {h}_{1}^{m1+}+(1-\theta ){h}_{1}^{m1-})({m}_{1}^{1+}-{m}_{1}^{1-})-(\theta {h}_{1}^{m2+}+(1-\theta ){h}_{1}^{m2-})({m}_{1}^{2+}-{m}_{1}^{2-})\\ -(\theta {h}_{2}^{m1+}+(1-\theta ){h}_{2}^{m1-})({m}_{2}^{1+}-{m}_{2}^{1-})-(\theta {h}_{2}^{m2+}+(1-\theta ){h}_{2}^{m2-})({m}_{2}^{2+}-{m}_{2}^{2-})\\ +\Delta t\theta ({M}_{1}^{1+}+{M}_{1}^{2+}+{M}_{2}^{1+}+{M}_{2}^{2+})\text{.}{F}^{m}+\Delta t(1-\theta )({M}_{1}^{1-}+{M}_{1}^{2-}+{M}_{2}^{1-}+{M}_{2}^{2-})\text{.}{F}^{m}\end{array}\)

\(\tau\)

8

\(\begin{array}{}+\theta \Delta t ({h}_{1}^{m1+}{M}_{1}^{1+}+{h}_{1}^{m2+}{M}_{1}^{2+}+{h}_{2}^{m1+}{M}_{2}^{1+}+{h}_{2}^{m2+}{M}_{2}^{2+}+{q}^{+})+\\ +(1-\theta )\Delta t ({h}_{1}^{m1-}{M}_{1}^{1-}+{h}_{1}^{m2-}{M}_{1}^{2-}+{h}_{2}^{m1-}{M}_{2}^{1-}+{h}_{2}^{m2-}{M}_{2}^{2-}+{q}^{-})\end{array}\)

\(\nabla \tau\)

Note:

The first term \({\stackrel{ˉ}{\Sigma }}_{1}\) does not include the term \(-{r}_{0}{F}^{m}\) because it is put into the external load \({L}^{\mathrm{meca}}\) and calculated by the external gravity load calculation option.

Using the [éq 7.2-1] definition of \({R}_{g}^{\mathrm{el}}\), we have:

\({U}^{\text{*}{\mathrm{el}}^{T}}\text{.}{R}_{g}^{\mathrm{el}}={E}_{g}^{\text{*}{\mathrm{el}}^{T}}\text{.}{\overline{\Sigma }}_{g}^{\mathrm{el}}\), which still gives us:

\({R}_{g}^{\mathrm{el}}={Q}_{g}^{{\mathrm{el}}^{T}}\text{.}{\overline{\Sigma }}_{g}^{\mathrm{el}}\)

This last equality is only the local form at a Gauss point of [éq 6.2-2].

7.3.2. Tangent operator: options FULL_MECA, RIGI_MECA_TANG#

In the following, if \(X\) designates a vector of components \({X}^{i}\) and \(Y\) a vector of components \({Y}^{j}\), \(\left[\frac{\partial X}{\partial Y}\right]\) will designate a matrix whose element occupying row \(i\) and column \(j\) is \(\frac{\partial {X}^{i}}{\partial {Y}^{j}}\).

To calculate the tangent operator, we will calculate the following quantities:

\(\left[\text{DRDE}\right]=\)

DR1U

DR1E

DR1P1

DR1GP1

DR1P2

DR1GP2

DR1T

DR1GT

DR2U

DR2E

DR2P1

DR2GP1

DR2P2

DR2GP2

DR2T

DR2GT

DR3U

DR3E

DR3P1

DR3GP1

DR3P2

DR3GP2

DR3T

DR3GT

DR4U

DR4E

DR4P1

DR4GP1

DR4P2

DR4GP2

DR4T

DR4GT

DR5U

DR5E

DR5P1

DR5GP1

DR5P2

DR5GP2

DR5T

DR5GT

DR6U

DR6E

DR6P1

DR6GP1

DR6P2

DR6GP2

DR6T

DR6GT

DR7U

DR7E

DR7P1

DR7GP1

DR7P2

DR7GP2

DR7T

DR7GT

DR8U

DR8E

DR8P1

DR8GP1

DR8P2

DR8GP2

DR8T

DR8GT

Where we noted:

\(\begin{array}{cc}\text{DRiU}=\frac{\partial {F}_{i}}{\partial u}& \text{DRiGP}1=\frac{\partial {F}_{i}}{\partial \nabla {p}_{1}}\\ \text{DRiE}=\frac{\partial {F}_{i}}{\partial \varepsilon }& \text{DRiGP}2=\frac{\partial {F}_{i}}{\partial \nabla {p}_{2}}\\ \text{DRiP}1=\frac{\partial {F}_{i}}{\partial {p}_{1}}& \text{DRiT}=\frac{\partial {F}_{i}}{\partial T}\\ \text{DRiP}2=\frac{\partial {F}_{i}}{\partial {p}_{2}}& \text{DRiDT}=\frac{\partial {F}_{i}}{\partial \nabla T}\end{array}\)

To do these calculations, it is considered that the laws of behavior provide, for the corresponding options, all of the following derivatives:

\(D\Sigma \mathrm{DE}=\left[\begin{array}{cccccccc}\frac{\partial \sigma \text{'}}{u}& \frac{\partial \sigma \text{'}}{\partial \varepsilon }& \frac{\partial \sigma \text{'}}{\partial {p}_{1}}& \frac{\partial \sigma \text{'}}{\partial \nabla {p}_{1}}& \frac{\partial \sigma \text{'}}{\partial {p}_{2}}& \frac{\partial \sigma \text{'}}{\partial \nabla {p}_{2}}& \frac{\partial \sigma \text{'}}{\partial T}& \frac{\partial \sigma \text{'}}{\partial \nabla T}\\ \frac{\partial {\sigma }_{p}}{\partial u}& \frac{\partial {\sigma }_{p}}{\partial \varepsilon }& \frac{\partial {\sigma }_{p}}{\partial {p}_{1}}& \frac{\partial {\sigma }_{p}}{\partial \nabla {p}_{1}}& \frac{\partial {\sigma }_{p}}{\partial {p}_{2}}& \frac{\partial {\sigma }_{p}}{\partial \nabla {p}_{2}}& \frac{\partial {\sigma }_{p}}{\partial T}& \frac{\partial {\sigma }_{p}}{\partial \nabla T}\\ \frac{\partial {m}_{1}^{1}}{\partial u}& \frac{\partial {m}_{1}^{1}}{\partial \varepsilon }& \frac{\partial {m}_{1}^{1}}{\partial {p}_{1}}& \frac{\partial {m}_{1}^{1}}{\partial \nabla {p}_{1}}& \frac{\partial {m}_{1}^{1}}{\partial {p}_{2}}& \frac{\partial {m}_{1}^{1}}{\partial \nabla {p}_{2}}& \frac{\partial {m}_{1}^{1}}{\partial T}& \frac{\partial {m}_{1}^{1}}{\partial \nabla T}\\ \frac{\partial {M}_{1}^{1}}{\partial u}& \frac{\partial {M}_{1}^{1}}{\partial \varepsilon }& \frac{\partial {M}_{1}^{1}}{\partial {p}_{1}}& \frac{\partial {M}_{1}^{1}}{\partial \nabla {p}_{1}}& \frac{\partial {M}_{1}^{1}}{\partial {p}_{2}}& \frac{\partial {M}_{1}^{1}}{\partial \nabla {p}_{2}}& \frac{\partial {M}_{1}^{1}}{\partial T}& \frac{\partial {M}_{1}^{1}}{\partial \nabla T}\\ \frac{\partial {h}^{{m}_{1}^{1}}}{\partial u}& \frac{\partial {h}^{{m}_{1}^{1}}}{\partial \varepsilon }& \frac{\partial {h}^{{m}_{1}^{1}}}{\partial {p}_{1}}& \frac{\partial {h}^{{m}_{1}^{1}}}{\partial \nabla {p}_{1}}& \frac{\partial {h}^{{m}_{1}^{1}}}{\partial {p}_{2}}& \frac{\partial {h}^{{m}_{1}^{1}}}{\partial \nabla {p}_{2}}& \frac{\partial {h}^{{m}_{1}^{1}}}{\partial T}& \frac{\partial {h}^{{m}_{1}^{1}}}{\partial \nabla T}\\ \frac{\partial {m}_{1}^{2}}{\partial u}& \frac{\partial {m}_{1}^{2}}{\partial \varepsilon }& \frac{\partial {m}_{1}^{2}}{\partial {p}_{1}}& \frac{\partial {m}_{1}^{2}}{\partial \nabla {p}_{1}}& \frac{\partial {m}_{1}^{2}}{\partial {p}_{2}}& \frac{\partial {m}_{1}^{2}}{\partial \nabla {p}_{2}}& \frac{\partial {m}_{1}^{2}}{\partial T}& \frac{\partial {m}_{1}^{2}}{\partial \nabla T}\\ \frac{\partial {M}_{1}^{2}}{\partial u}& \frac{\partial {M}_{1}^{2}}{\partial \varepsilon }& \frac{\partial {M}_{1}^{2}}{\partial {p}_{1}}& \frac{\partial {M}_{1}^{2}}{\partial \nabla {p}_{1}}& \frac{\partial {M}_{1}^{2}}{\partial {p}_{2}}& \frac{\partial {M}_{1}^{2}}{\partial \nabla {p}_{2}}& \frac{\partial {M}_{1}^{2}}{\partial T}& \frac{\partial {M}_{1}^{2}}{\partial \nabla T}\\ \frac{\partial {h}^{{m}_{1}^{2}}}{\partial u}& \frac{\partial {h}^{{m}_{1}^{2}}}{\partial \varepsilon }& \frac{\partial {h}^{{m}_{1}^{2}}}{\partial {p}_{1}}& \frac{\partial {h}^{{m}_{1}^{2}}}{\partial \nabla {p}_{1}}& \frac{\partial {h}^{{m}_{1}^{2}}}{\partial {p}_{2}}& \frac{\partial {h}^{{m}_{1}^{2}}}{\partial \nabla {p}_{2}}& \frac{\partial {h}^{{m}_{1}^{2}}}{\partial T}& \frac{\partial {h}^{{m}_{1}^{2}}}{\partial \nabla T}\\ \frac{\partial {m}_{2}^{1}}{\partial u}& \frac{\partial {m}_{2}^{1}}{\partial \varepsilon }& \frac{\partial {m}_{2}^{1}}{\partial {p}_{1}}& \frac{\partial {m}_{2}^{1}}{\partial \nabla {p}_{1}}& \frac{\partial {m}_{2}^{1}}{\partial {p}_{2}}& \frac{\partial {m}_{2}^{1}}{\partial \nabla {p}_{2}}& \frac{\partial {m}_{2}^{1}}{\partial T}& \frac{\partial {m}_{2}^{1}}{\partial \nabla T}\\ \frac{\partial {M}_{2}^{1}}{\partial u}& \frac{\partial {M}_{2}^{1}}{\partial \varepsilon }& \frac{\partial {M}_{2}^{1}}{\partial {p}_{1}}& \frac{\partial {M}_{2}^{1}}{\partial \nabla {p}_{1}}& \frac{\partial {M}_{2}^{1}}{\partial {p}_{2}}& \frac{\partial {M}_{2}^{1}}{\partial \nabla {p}_{2}}& \frac{\partial {M}_{2}^{1}}{\partial T}& \frac{\partial {M}_{2}^{1}}{\partial \nabla T}\\ \frac{\partial {h}^{{m}_{2}^{1}}}{\partial u}& \frac{\partial {h}^{{m}_{2}^{1}}}{\partial \varepsilon }& \frac{\partial {h}^{{m}_{2}^{1}}}{\partial {p}_{1}}& \frac{\partial {h}^{{m}_{2}^{1}}}{\partial \nabla {p}_{1}}& \frac{\partial {h}^{{m}_{2}^{1}}}{\partial {p}_{2}}& \frac{\partial {h}^{{m}_{2}^{1}}}{\partial \nabla {p}_{2}}& \frac{\partial {h}^{{m}_{2}^{1}}}{\partial T}& \frac{\partial {h}^{{m}_{2}^{1}}}{\partial \nabla T}\\ \frac{\partial {m}_{2}^{2}}{\partial u}& \frac{\partial {m}_{2}^{2}}{\partial \varepsilon }& \frac{\partial {m}_{2}^{2}}{\partial {p}_{1}}& \frac{\partial {m}_{2}^{2}}{\partial \nabla {p}_{1}}& \frac{\partial {m}_{2}^{2}}{\partial {p}_{2}}& \frac{\partial {m}_{2}^{2}}{\partial \nabla {p}_{2}}& \frac{\partial {m}_{2}^{2}}{\partial T}& \frac{\partial {m}_{2}^{2}}{\partial \nabla T}\\ \frac{\partial {M}_{2}^{2}}{\partial u}& \frac{\partial {M}_{2}^{2}}{\partial \varepsilon }& \frac{\partial {M}_{2}^{2}}{\partial {p}_{1}}& \frac{\partial {M}_{2}^{2}}{\partial \nabla {p}_{1}}& \frac{\partial {M}_{2}^{2}}{\partial {p}_{2}}& \frac{\partial {M}_{2}^{2}}{\partial \nabla {p}_{2}}& \frac{\partial {M}_{2}^{2}}{\partial T}& \frac{\partial {M}_{2}^{2}}{\partial \nabla T}\\ \frac{\partial {h}^{{m}_{2}^{2}}}{\partial u}& \frac{\partial {h}^{{m}_{2}^{2}}}{\partial \varepsilon }& \frac{\partial {h}^{{m}_{2}^{2}}}{\partial {p}_{1}}& \frac{\partial {h}^{{m}_{2}^{2}}}{\partial \nabla {p}_{1}}& \frac{\partial {h}^{{m}_{2}^{2}}}{\partial {p}_{2}}& \frac{\partial {h}^{{m}_{2}^{2}}}{\partial \nabla {p}_{2}}& \frac{\partial {h}^{{m}_{2}^{2}}}{\partial T}& \frac{\partial {h}^{{m}_{2}^{2}}}{\partial \nabla T}\\ \frac{\partial Q\text{'}}{\partial u}& \frac{\partial Q\text{'}}{\partial \varepsilon }& \frac{\partial Q\text{'}}{\partial {p}_{1}}& \frac{\partial Q\text{'}}{\partial \nabla {p}_{1}}& \frac{\partial Q\text{'}}{\partial {p}_{2}}& \frac{\partial Q\text{'}}{\partial \nabla {p}_{2}}& \frac{\partial Q\text{'}}{\partial T}& \frac{\partial Q\text{'}}{\partial \nabla T}\\ \frac{\partial q}{\partial u}& \frac{\partial q}{\partial \varepsilon }& \frac{\partial q}{\partial {p}_{1}}& \frac{\partial q}{\partial \nabla {p}_{1}}& \frac{\partial q}{\partial {p}_{2}}& \frac{\partial q}{\partial \nabla {p}_{2}}& \frac{\partial q}{\partial T}& \frac{\partial q}{\partial \nabla T}\end{array}\right]\)

Note:

In these expressions, the derivatives with respect to \(u\) are all zero, but we keep the writing given the definition of the matries \({Q}_{g}^{\text{el}}\) that we adopted.

The call to the laws of behavior will provide the pieces of the matrix \(D\Sigma \text{DE}\) according to the equations present:

\(\left[\text{DMECDE}\right]=\left[\begin{array}{c}\frac{\partial \sigma \text{'}}{\partial \varepsilon }\\ \frac{\partial {\sigma }_{p}}{\partial \varepsilon }\end{array}\right];\left[\text{DMECP1}\right]=\left[\begin{array}{cc}\frac{\partial \sigma \text{'}}{\partial {p}_{1}}& \frac{\partial \sigma \text{'}}{\partial \nabla {p}_{1}}\\ \frac{\partial {\sigma }_{p}}{\partial {p}_{1}}& \frac{\partial {\sigma }_{p}}{\partial \nabla {p}_{1}}\end{array}\right];\left[\text{DMECP}2\right]=\left[\begin{array}{cc}\frac{\partial \sigma \text{'}}{\partial {p}_{2}}& \frac{\partial \sigma \text{'}}{\partial \nabla {p}_{2}}\\ \frac{\partial {\sigma }_{p}}{\partial {p}_{2}}& \frac{\partial {\sigma }_{p}}{\partial \nabla {p}_{2}}\end{array}\right]\left[\text{DMECDT}\right]=\left[\begin{array}{cc}\frac{\partial \sigma }{\partial T}& \frac{\partial \sigma }{\partial \nabla T}\\ \frac{\partial {\sigma }_{p}}{\partial T}& \frac{\partial {\sigma }_{p}}{\partial \nabla T}\end{array}\right]\)

\(\left[\text{DP11DE}\right]=\left[\begin{array}{c}\frac{\partial {m}_{1}^{1}}{\partial \varepsilon }\\ \frac{\partial {M}_{1}^{1}}{\partial \varepsilon }\\ \frac{\partial {h}^{{m}_{1}^{1}}}{\partial \varepsilon }\end{array}\right];\left[\text{DP11P1}\right]=\left[\begin{array}{cc}\frac{\partial {m}_{1}^{1}}{\partial {p}_{1}}& \frac{\partial {m}_{1}^{1}}{\partial \nabla {p}_{1}}\\ \frac{\partial {M}_{1}^{1}}{\partial {p}_{1}}& \frac{\partial {M}_{1}^{1}}{\partial \nabla {p}_{1}}\\ \frac{\partial {h}^{{m}_{1}^{1}}}{\partial {p}_{1}}& \frac{\partial {h}^{{m}_{1}^{1}}}{\partial \nabla {p}_{1}}\end{array}\right];\left[\text{DP11P2}\right]=\left[\begin{array}{cc}\frac{\partial {m}_{1}^{1}}{\partial {p}_{2}}& \frac{\partial {m}_{1}^{1}}{\partial \nabla {p}_{2}}\\ \frac{\partial {M}_{1}^{1}}{\partial {p}_{2}}& \frac{\partial {M}_{1}^{1}}{\partial \nabla {p}_{2}}\\ \frac{\partial {h}^{{m}_{1}^{1}}}{\partial {p}_{2}}& \frac{\partial {h}^{{m}_{1}^{1}}}{\partial \nabla {p}_{2}}\end{array}\right]\left[\text{DP11DT}\right]=\left[\begin{array}{cc}\frac{\partial {m}_{1}^{1}}{\partial T}& \frac{\partial {m}_{1}^{1}}{\partial \nabla T}\\ \frac{\partial {M}_{1}^{1}}{\partial T}& \frac{\partial {M}_{1}^{1}}{\partial \nabla T}\\ \frac{\partial {h}^{{m}_{1}^{1}}}{\partial T}& \frac{\partial {h}^{{m}_{1}^{1}}}{\partial \nabla T}\end{array}\right]\)

\(\left[\text{DP12DE}\right]=\left[\begin{array}{c}\frac{\partial {m}_{1}^{2}}{\partial \varepsilon }\\ \frac{\partial {M}_{1}^{2}}{\partial \varepsilon }\\ \frac{\partial {h}^{{m}_{1}^{2}}}{\partial \varepsilon }\end{array}\right];\left[\text{DP12P1}\right]=\left[\begin{array}{cc}\frac{\partial {m}_{1}^{2}}{\partial {p}_{1}}& \frac{\partial {m}_{1}^{2}}{\partial \nabla {p}_{1}}\\ \frac{\partial {M}_{1}^{2}}{\partial {p}_{1}}& \frac{\partial {M}_{1}^{2}}{\partial \nabla {p}_{1}}\\ \frac{\partial {h}^{{m}_{1}^{2}}}{\partial {p}_{1}}& \frac{\partial {h}^{{m}_{1}^{2}}}{\partial \nabla {p}_{1}}\end{array}\right];\left[\text{DP12P2}\right]=\left[\begin{array}{cc}\frac{\partial {m}_{1}^{2}}{\partial {p}_{2}}& \frac{\partial {m}_{1}^{2}}{\partial \nabla {p}_{2}}\\ \frac{\partial {M}_{1}^{2}}{\partial {p}_{2}}& \frac{\partial {M}_{1}^{2}}{\partial \nabla {p}_{2}}\\ \frac{\partial {h}^{{m}_{1}^{2}}}{\partial {p}_{2}}& \frac{\partial {h}^{{m}_{1}^{2}}}{\partial \nabla {p}_{2}}\end{array}\right]\left[\text{DP12DT}\right]=\left[\begin{array}{cc}\frac{\partial {m}_{1}^{2}}{\partial T}& \frac{\partial {m}_{1}^{2}}{\partial \nabla T}\\ \frac{\partial {M}_{1}^{2}}{\partial T}& \frac{\partial {M}_{1}^{2}}{\partial \nabla T}\\ \frac{\partial {h}^{{m}_{1}^{2}}}{\partial T}& \frac{\partial {h}^{{m}_{1}^{2}}}{\partial \nabla T}\end{array}\right]\)

\(\left[\text{DP21DE}\right]=\left[\begin{array}{c}\frac{\partial {m}_{2}^{1}}{\partial \varepsilon }\\ \frac{\partial {M}_{2}^{1}}{\partial \varepsilon }\\ \frac{\partial {h}^{{m}_{2}^{1}}}{\partial \varepsilon }\end{array}\right];\left[\text{DP21P1}\right]=\left[\begin{array}{cc}\frac{\partial {m}_{2}^{1}}{\partial {p}_{1}}& \frac{\partial {m}_{2}^{1}}{\partial \nabla {p}_{1}}\\ \frac{\partial {M}_{2}^{1}}{\partial {p}_{1}}& \frac{\partial {M}_{2}^{1}}{\partial \nabla {p}_{1}}\\ \frac{\partial {h}^{{m}_{2}^{1}}}{\partial {p}_{1}}& \frac{\partial {h}^{{m}_{2}^{1}}}{\partial \nabla {p}_{1}}\end{array}\right];\left[\text{DP21P2}\right]=\left[\begin{array}{cc}\frac{\partial {m}_{2}^{1}}{\partial {p}_{2}}& \frac{\partial {m}_{2}^{1}}{\partial \nabla {p}_{2}}\\ \frac{\partial {M}_{2}^{1}}{\partial {p}_{2}}& \frac{\partial {M}_{2}^{1}}{\partial \nabla {p}_{2}}\\ \frac{\partial {h}^{{m}_{2}^{1}}}{\partial {p}_{2}}& \frac{\partial {h}^{{m}_{2}^{1}}}{\partial \nabla {p}_{2}}\end{array}\right]\left[\text{DP21DT}\right]=\left[\begin{array}{cc}\frac{\partial {m}_{2}^{1}}{\partial T}& \frac{\partial {m}_{2}^{1}}{\partial \nabla T}\\ \frac{\partial {M}_{2}^{1}}{\partial T}& \frac{\partial {M}_{2}^{1}}{\partial \nabla T}\\ \frac{\partial {h}^{{m}_{2}^{1}}}{\partial T}& \frac{\partial {h}^{{m}_{2}^{1}}}{\partial \nabla T}\end{array}\right]\)

\(\left[\text{DP22DE}\right]=\left[\begin{array}{c}\frac{\partial {m}_{2}^{2}}{\partial \varepsilon }\\ \frac{\partial {M}_{2}^{2}}{\partial \varepsilon }\\ \frac{\partial {h}^{{m}_{2}^{2}}}{\partial \varepsilon }\end{array}\right];\left[\text{DP22P1}\right]=\left[\begin{array}{cc}\frac{\partial {m}_{2}^{2}}{\partial {p}_{1}}& \frac{\partial {m}_{2}^{2}}{\partial \nabla {p}_{1}}\\ \frac{\partial {M}_{2}^{2}}{\partial {p}_{1}}& \frac{\partial {M}_{2}^{2}}{\partial \nabla {p}_{1}}\\ \frac{\partial {h}^{{m}_{2}^{2}}}{\partial {p}_{1}}& \frac{\partial {h}^{{m}_{2}^{2}}}{\partial \nabla {p}_{1}}\end{array}\right];\left[\text{DP22P2}\right]=\left[\begin{array}{cc}\frac{\partial {m}_{2}^{2}}{\partial {p}_{2}}& \frac{\partial {m}_{2}^{2}}{\partial \nabla {p}_{2}}\\ \frac{\partial {M}_{2}^{2}}{\partial {p}_{2}}& \frac{\partial {M}_{2}^{2}}{\partial \nabla {p}_{2}}\\ \frac{\partial {h}^{{m}_{2}^{2}}}{\partial {p}_{2}}& \frac{\partial {h}^{{m}_{2}^{2}}}{\partial \nabla {p}_{2}}\end{array}\right]\left[\text{DP22DT}\right]=\left[\begin{array}{cc}\frac{\partial {m}_{2}^{2}}{\partial T}& \frac{\partial {m}_{2}^{2}}{\partial \nabla T}\\ \frac{\partial {M}_{2}^{2}}{\partial T}& \frac{\partial {M}_{2}^{2}}{\partial \nabla T}\\ \frac{\partial {h}^{{m}_{2}^{2}}}{\partial T}& \frac{\partial {h}^{{m}_{2}^{2}}}{\partial \nabla T}\end{array}\right]\)

\(\left[\text{DTDE}\right]=\left[\begin{array}{c}\frac{\partial Q\text{'}}{\partial \varepsilon }\\ \frac{\partial q}{\partial \varepsilon }\end{array}\right];\left[\text{DTDP1}\right]=\left[\begin{array}{cc}\frac{\partial Q\text{'}}{\partial {p}_{1}}& \frac{\partial Q\text{'}}{\partial \nabla {p}_{1}}\\ \frac{\partial q}{\partial {p}_{1}}& \frac{\partial q}{\partial \nabla {p}_{1}}\end{array}\right];\left[\text{DTDP2}\right]=\left[\begin{array}{cc}\frac{\partial Q\text{'}}{\partial {p}_{2}}& \frac{\partial Q\text{'}}{\partial \nabla {p}_{2}}\\ \frac{\partial q}{\partial {p}_{2}}& \frac{\partial q}{\partial \nabla {p}_{2}}\end{array}\right]\left[\text{DTDT}\right]=\left[\begin{array}{cc}\frac{\partial Q\text{'}}{\partial T}& \frac{\partial Q\text{'}}{\partial T}\\ \frac{\partial q}{\partial T}& \frac{\partial q}{\partial T}\end{array}\right]\)

Moreover, by deriving the expression of the residue in relation to the constraints, we define:

\(D\overline{\Sigma }D\Sigma =\left[\begin{array}{cccccccccccccccc}\frac{\partial \overline{{\Sigma }_{1}}}{\partial \sigma \text{'}}& \frac{\partial \overline{{\Sigma }_{1}}}{\partial {\sigma }_{p}}& \frac{\partial \overline{{\Sigma }_{1}}}{\partial {m}_{1}^{1}}& \frac{\partial \overline{{\Sigma }_{1}}}{\partial {M}_{1}^{1}}& \frac{\partial \overline{{\Sigma }_{1}}}{\partial {h}^{{m}_{1}^{1}}}& \frac{\partial \overline{{\Sigma }_{1}}}{\partial {m}_{1}^{2}}& \frac{\partial \overline{{\Sigma }_{1}}}{\partial {M}_{1}^{2}}& \frac{\partial \overline{{\Sigma }_{1}}}{\partial {h}^{{m}_{1}^{2}}}& \frac{\partial \overline{{\Sigma }_{1}}}{\partial {m}_{2}^{1}}& \frac{\partial \overline{{\Sigma }_{1}}}{\partial {M}_{2}^{1}}& \frac{\partial \overline{{\Sigma }_{1}}}{\partial {h}^{{m}_{2}^{1}}}& \frac{\partial \overline{{\Sigma }_{1}}}{\partial {m}_{2}^{2}}& \frac{\partial \overline{{\Sigma }_{1}}}{\partial {M}_{2}^{2}}& \frac{\partial \overline{{\Sigma }_{1}}}{\partial {h}^{{m}_{2}^{2}}}& \frac{\partial \overline{{\Sigma }_{1}}}{\partial Q\text{'}}& \frac{\partial \overline{{\Sigma }_{1}}}{\partial q}\\ \frac{\partial \overline{{\Sigma }_{2}}}{\partial \sigma \text{'}}& \frac{\partial \overline{{\Sigma }_{2}}}{\partial {\sigma }_{p}}& \frac{\partial \overline{{\Sigma }_{2}}}{\partial {m}_{1}^{1}}& \frac{\partial \overline{{\Sigma }_{2}}}{\partial {M}_{1}^{1}}& \frac{\partial \overline{{\Sigma }_{2}}}{\partial {h}^{{m}_{1}^{1}}}& \frac{\partial \overline{{\Sigma }_{2}}}{\partial {m}_{1}^{2}}& \frac{\partial \overline{{\Sigma }_{2}}}{\partial {M}_{1}^{2}}& \frac{\partial \overline{{\Sigma }_{2}}}{\partial {h}^{{m}_{1}^{2}}}& \frac{\partial \overline{{\Sigma }_{2}}}{\partial {m}_{2}^{1}}& \frac{\partial \overline{{\Sigma }_{2}}}{\partial {M}_{2}^{1}}& \frac{\partial \overline{{\Sigma }_{2}}}{\partial {h}^{{m}_{2}^{1}}}& \frac{\partial \overline{{\Sigma }_{2}}}{\partial {m}_{2}^{2}}& \frac{\partial \overline{{\Sigma }_{2}}}{\partial {M}_{2}^{2}}& \frac{\partial \overline{{\Sigma }_{2}}}{\partial {h}^{{m}_{2}^{2}}}& \frac{\partial \overline{{\Sigma }_{2}}}{\partial Q\text{'}}& \frac{\partial \overline{{\Sigma }_{2}}}{\partial q}\\ \frac{\partial \overline{{\Sigma }_{3}}}{\partial \sigma \text{'}}& \frac{\partial \overline{{\Sigma }_{3}}}{\partial {\sigma }_{p}}& \frac{\partial \overline{{\Sigma }_{3}}}{\partial {m}_{1}^{1}}& \frac{\partial \overline{{\Sigma }_{3}}}{\partial {M}_{1}^{1}}& \frac{\partial \overline{{\Sigma }_{3}}}{\partial {h}^{{m}_{1}^{1}}}& \frac{\partial \overline{{\Sigma }_{3}}}{\partial {m}_{1}^{2}}& \frac{\partial \overline{{\Sigma }_{3}}}{\partial {M}_{1}^{2}}& \frac{\partial \overline{{\Sigma }_{3}}}{\partial {h}^{{m}_{1}^{2}}}& \frac{\partial \overline{{\Sigma }_{3}}}{\partial {m}_{2}^{1}}& \frac{\partial \overline{{\Sigma }_{3}}}{\partial {M}_{2}^{1}}& \frac{\partial \overline{{\Sigma }_{3}}}{\partial {h}^{{m}_{2}^{1}}}& \frac{\partial \overline{{\Sigma }_{3}}}{\partial {m}_{2}^{2}}& \frac{\partial \overline{{\Sigma }_{3}}}{\partial {M}_{2}^{2}}& \frac{\partial \overline{{\Sigma }_{3}}}{\partial {h}^{{m}_{2}^{2}}}& \frac{\partial \overline{{\Sigma }_{3}}}{\partial Q\text{'}}& \frac{\partial \overline{{\Sigma }_{3}}}{\partial q}\\ \frac{\partial \overline{{\Sigma }_{4}}}{\partial \sigma \text{'}}& \frac{\partial \overline{{\Sigma }_{4}}}{\partial {\sigma }_{p}}& \frac{\partial \overline{{\Sigma }_{4}}}{\partial {m}_{1}^{1}}& \frac{\partial \overline{{\Sigma }_{4}}}{\partial {M}_{1}^{1}}& \frac{\partial \overline{{\Sigma }_{4}}}{\partial {h}^{{m}_{1}^{1}}}& \frac{\partial \overline{{\Sigma }_{4}}}{\partial {m}_{1}^{2}}& \frac{\partial \overline{{\Sigma }_{4}}}{\partial {M}_{1}^{2}}& \frac{\partial \overline{{\Sigma }_{4}}}{\partial {h}^{{m}_{1}^{2}}}& \frac{\partial \overline{{\Sigma }_{4}}}{\partial {m}_{2}^{1}}& \frac{\partial \overline{{\Sigma }_{4}}}{\partial {M}_{2}^{1}}& \frac{\partial \overline{{\Sigma }_{4}}}{\partial {h}^{{m}_{2}^{1}}}& \frac{\partial \overline{{\Sigma }_{4}}}{\partial {m}_{2}^{2}}& \frac{\partial \overline{{\Sigma }_{4}}}{\partial {M}_{2}^{2}}& \frac{\partial \overline{{\Sigma }_{4}}}{\partial {h}^{{m}_{2}^{2}}}& \frac{\partial \overline{{\Sigma }_{4}}}{\partial Q\text{'}}& \frac{\partial \overline{{\Sigma }_{4}}}{\partial q}\\ \frac{\partial \overline{{\Sigma }_{5}}}{\partial \sigma \text{'}}& \frac{\partial \overline{{\Sigma }_{5}}}{\partial {\sigma }_{p}}& \frac{\partial \overline{{\Sigma }_{5}}}{\partial {m}_{1}^{1}}& \frac{\partial \overline{{\Sigma }_{5}}}{\partial {M}_{1}^{1}}& \frac{\partial \overline{{\Sigma }_{5}}}{\partial {h}^{{m}_{1}^{1}}}& \frac{\partial \overline{{\Sigma }_{5}}}{\partial {m}_{1}^{2}}& \frac{\partial \overline{{\Sigma }_{5}}}{\partial {M}_{1}^{2}}& \frac{\partial \overline{{\Sigma }_{5}}}{\partial {h}^{{m}_{1}^{2}}}& \frac{\partial \overline{{\Sigma }_{5}}}{\partial {m}_{2}^{1}}& \frac{\partial \overline{{\Sigma }_{5}}}{\partial {M}_{2}^{1}}& \frac{\partial \overline{{\Sigma }_{5}}}{\partial {h}^{{m}_{2}^{1}}}& \frac{\partial \overline{{\Sigma }_{5}}}{\partial {m}_{2}^{2}}& \frac{\partial \overline{{\Sigma }_{5}}}{\partial {M}_{2}^{2}}& \frac{\partial \overline{{\Sigma }_{5}}}{\partial {h}^{{m}_{2}^{2}}}& \frac{\partial \overline{{\Sigma }_{5}}}{\partial Q\text{'}}& \frac{\partial \overline{{\Sigma }_{5}}}{\partial q}\\ \frac{\partial \overline{{\Sigma }_{6}}}{\partial \sigma \text{'}}& \frac{\partial \overline{{\Sigma }_{6}}}{\partial {\sigma }_{p}}& \frac{\partial \overline{{\Sigma }_{6}}}{\partial {m}_{1}^{1}}& \frac{\partial \overline{{\Sigma }_{6}}}{\partial {M}_{1}^{1}}& \frac{\partial \overline{{\Sigma }_{6}}}{\partial {h}^{{m}_{1}^{1}}}& \frac{\partial \overline{{\Sigma }_{6}}}{\partial {m}_{1}^{2}}& \frac{\partial \overline{{\Sigma }_{6}}}{\partial {M}_{1}^{2}}& \frac{\partial \overline{{\Sigma }_{6}}}{\partial {h}^{{m}_{1}^{2}}}& \frac{\partial \overline{{\Sigma }_{6}}}{\partial {m}_{2}^{1}}& \frac{\partial \overline{{\Sigma }_{6}}}{\partial {M}_{2}^{1}}& \frac{\partial \overline{{\Sigma }_{6}}}{\partial {h}^{{m}_{2}^{1}}}& \frac{\partial \overline{{\Sigma }_{6}}}{\partial {m}_{2}^{2}}& \frac{\partial \overline{{\Sigma }_{6}}}{\partial {M}_{2}^{2}}& \frac{\partial \overline{{\Sigma }_{6}}}{\partial {h}^{{m}_{2}^{2}}}& \frac{\partial \overline{{\Sigma }_{6}}}{\partial Q\text{'}}& \frac{\partial \overline{{\Sigma }_{6}}}{\partial q}\\ \frac{\partial \overline{{\Sigma }_{7}}}{\partial \sigma \text{'}}& \frac{\partial \overline{{\Sigma }_{7}}}{\partial {\sigma }_{p}}& \frac{\partial \overline{{\Sigma }_{7}}}{\partial {m}_{1}^{1}}& \frac{\partial \overline{{\Sigma }_{7}}}{\partial {M}_{1}^{1}}& \frac{\partial \overline{{\Sigma }_{7}}}{\partial {h}^{{m}_{1}^{1}}}& \frac{\partial \overline{{\Sigma }_{7}}}{\partial {m}_{1}^{2}}& \frac{\partial \overline{{\Sigma }_{7}}}{\partial {M}_{1}^{2}}& \frac{\partial \overline{{\Sigma }_{7}}}{\partial {h}^{{m}_{1}^{2}}}& \frac{\partial \overline{{\Sigma }_{7}}}{\partial {m}_{2}^{1}}& \frac{\partial \overline{{\Sigma }_{7}}}{\partial {M}_{2}^{1}}& \frac{\partial \overline{{\Sigma }_{7}}}{\partial {h}^{{m}_{2}^{1}}}& \frac{\partial \overline{{\Sigma }_{7}}}{\partial {m}_{2}^{2}}& \frac{\partial \overline{{\Sigma }_{7}}}{\partial {M}_{2}^{2}}& \frac{\partial \overline{{\Sigma }_{7}}}{\partial {h}^{{m}_{2}^{2}}}& \frac{\partial \overline{{\Sigma }_{7}}}{\partial Q\text{'}}& \frac{\partial \overline{{\Sigma }_{7}}}{\partial q}\\ \frac{\partial \overline{{\Sigma }_{8}}}{\partial \sigma \text{'}}& \frac{\partial \overline{{\Sigma }_{8}}}{\partial {\sigma }_{p}}& \frac{\partial \overline{{\Sigma }_{8}}}{\partial {m}_{1}^{1}}& \frac{\partial \overline{{\Sigma }_{8}}}{\partial {M}_{1}^{1}}& \frac{\partial \overline{{\Sigma }_{8}}}{\partial {h}^{{m}_{1}^{1}}}& \frac{\partial \overline{{\Sigma }_{8}}}{\partial {m}_{1}^{2}}& \frac{\partial \overline{{\Sigma }_{8}}}{\partial {M}_{1}^{2}}& \frac{\partial \overline{{\Sigma }_{8}}}{\partial {h}^{{m}_{1}^{2}}}& \frac{\partial \overline{{\Sigma }_{8}}}{\partial {m}_{2}^{1}}& \frac{\partial \overline{{\Sigma }_{8}}}{\partial {M}_{2}^{1}}& \frac{\partial \overline{{\Sigma }_{8}}}{\partial {h}^{{m}_{2}^{1}}}& \frac{\partial \overline{{\Sigma }_{8}}}{\partial {m}_{2}^{2}}& \frac{\partial \overline{{\Sigma }_{8}}}{\partial {M}_{2}^{2}}& \frac{\partial \overline{{\Sigma }_{8}}}{\partial {h}^{{m}_{2}^{2}}}& \frac{\partial \overline{{\Sigma }_{8}}}{\partial Q\text{'}}& \frac{\partial \overline{{\Sigma }_{8}}}{\partial q}\end{array}\right]\)

Since all these quantities are not necessarily calculated, we will note, for \(i\) from 1 to 8:

\(\begin{array}{cc}\left[D\overline{\Sigma }iD\sigma \right]=\left[\frac{\partial {\overline{\Sigma }}_{i}}{\partial \sigma \text{'}},\frac{\partial {\overline{\Sigma }}_{i}}{\partial {\sigma }_{p}}\right]& \left[D\overline{\Sigma }i\text{DP}\text{21}\right]=\left[\frac{\partial {\overline{\Sigma }}_{i}}{\partial {m}_{2}^{1}},\frac{\partial {\overline{\Sigma }}_{i}}{\partial {M}_{2}^{1}},\frac{\partial {\overline{\Sigma }}_{i}}{\partial {h}^{{m}_{2}^{1}}}\right]\\ \left[D\overline{\Sigma }i\text{DP}\text{11}\right]=\left[\frac{\partial {\overline{\Sigma }}_{i}}{\partial {m}_{1}^{2}},\frac{\partial {\overline{\Sigma }}_{i}}{\partial {M}_{1}^{1}},\frac{\partial {\overline{\Sigma }}_{i}}{\partial {h}^{{m}_{1}^{2}}}\right]& \left[D\overline{\Sigma }i\text{DP}\text{22}\right]=\left[\frac{\partial {\overline{\Sigma }}_{i}}{\partial {m}_{2}^{2}},\frac{\partial {\overline{\Sigma }}_{i}}{\partial {M}_{2}^{2}},\frac{\partial {\overline{\Sigma }}_{i}}{\partial {h}^{{m}_{2}^{2}}}\right]\\ \left[D\overline{\Sigma }i\text{DP}\text{12}\right]=\left[\frac{\partial {\overline{\Sigma }}_{i}}{\partial {m}_{1}^{2}},\frac{\partial {\overline{\Sigma }}_{i}}{\partial {M}_{1}^{1}},\frac{\partial {\overline{\Sigma }}_{i}}{\partial {h}^{{m}_{1}^{2}}}\right]& \left[D\overline{\Sigma }i\text{DT}\right]=\left[\frac{\partial {\overline{\Sigma }}_{i}}{\partial Q\text{'}},\frac{\partial {\overline{\Sigma }}_{i}}{\partial q}\right]\end{array}\)

It is then clear that:

\(D\overline{\Sigma }\mathrm{DE}=D\overline{\Sigma }D\Sigma \text{.}D\Sigma \mathrm{DE}\)

And the contribution of the Gauss point to the tangent matrix \(D{F}_{g}^{\text{el}}\) is obtained by:

\(D{F}_{g}^{\text{el}}={Q}_{g}^{{\text{el}}^{T}}\text{.}D\overline{\Sigma }\text{DE}\text{.}{Q}_{g}^{\text{el}}\)

7.4. Global algorithm#

The algorithm then becomes:

Initializations:

Calculating \({L}^{{\text{meca}}^{+}}\) (option CHAR_MECA)

Calculating \(D{F}^{-}\) (option RIGI_MECA_TANG)

Calculation of \(\Delta {U}_{0}\) by: \(D{F}^{-}\text{.}\Delta {U}_{0}={L}^{{\text{meca}}^{+}}-{L}^{{\text{meca}}^{-}}\)

Newton balance iterations

El element loop

G Gauss point buckle

Calculation \({Q}_{g}^{\text{el}}\)

Calculation \({E}_{g}^{{\text{el}}^{-}}={Q}_{g}^{\text{el}}\text{.}{U}^{{\text{el}}^{-}}\) and \({E}_{g}^{{\text{el}}^{+}}={Q}_{g}^{\text{el}}\text{.}{U}^{{\text{el}}^{+}}\)

calculation of: \({\Sigma }_{gn}^{{\text{el}}^{+}},{\alpha }_{g}^{{\text{el}}^{+}},\frac{\partial {\Sigma }_{gn}^{{\text{el}}^{+}}}{\partial {E}_{gn}^{{\text{el}}^{+}}}\) (depending on option) from \({E}_{g}^{{\text{el}}^{-}},{\Sigma }_{g}^{{\text{el}}^{-}},{\alpha }_{g}^{{\text{el}}^{-}},{E}_{gn}^{{\text{el}}^{+}}\)

calculating \({\overline{\Sigma }}_{gn}^{{\text{el}}^{+}}\) from \({\Sigma }_{gn}^{{\text{el}}^{+}}\); \({R}_{gn}^{{\text{el}}^{+}}={Q}_{g}^{{\text{el}}^{T}}\text{.}{\overline{\Sigma }}_{gn}^{{\text{el}}^{+}}\)

calculation of \(\frac{\partial {\overline{\Sigma }}_{gn}^{{\text{el}}^{+}}}{\partial {\Sigma }_{gn}^{{\text{el}}^{+}}}\) from \({\Sigma }_{gn}^{{\text{el}}^{+}}\); \(D{F}_{gn}^{{\text{el}}^{+}}={Q}_{g}^{{\text{el}}^{T}}\text{.}\frac{\partial {\overline{\Sigma }}_{gn}^{{\text{el}}^{+}}}{\partial {\Sigma }_{gn}^{{\text{el}}^{+}}}\text{.}\frac{\partial {\Sigma }_{gn}^{{\text{el}}^{+}}}{\partial {E}_{gn}^{{\text{el}}^{+}}}\text{.}{Q}_{g}^{\text{el}}\) (depending on option)

Calculation of \(\delta {U}_{n+1}\) by:

\(D{F}_{n}^{+}\text{.}\delta {U}_{n+1}=-{R}_{n}^{+}+{L}^{{\text{meca}}^{+}}\)

Updated:

\(\Delta {U}_{n+1}=\Delta {U}_{n}+\rho \delta {U}_{n+1}\)

If convergence test OK

End Newton: no next step

Sinon

\(n=n+1\)