4. References#

[1] G. Bayada, M. Chambat, K. Lhalouani, and T. Sassi. Finite elements with joints for contact problems with non-local Coulomb friction. (english) [on the mortar finite element method for contact problems with nonlocal Coulomb law]. C. R. Acad. Sci. Paris Sér. I Math., 325 (12) :1323—1328, 1997.

[2] F. Ben Belgacem and S. C. Brenner. Some non-standard finite element estimates with applications to 3D Poisson and Signorin problems. Electronic Transactions on Numerical Analysis, 12:134 —148, 2001.

[3] F. Ben Belgacem, P. Hild, and P. Laborde. Approximation of the unilateral contact problem by the mortar finite element method. C. R. Acad. Sci. Paris Sér. I Math., 324 (1) :123—127, 1997.

[4] F. Ben Belgacem, P. Hild, and P. Laborde. Extension of the mortar finite element method to a variational inequality modeling unilateral contact. Mathematical Models and Methods in Applied Sciences, 9 (2) :287—303, 1999.

[5] F. Ben Belgacem and Y. Renard. Hybrid finite element methods for the Signorin problem. Mathematics of Computation, 72 (243) :1117—1145, 2003.

[6] C. Bernardi and V. Girault. A local regularization operator for triangular and quadrilateral finite elements. SIAM Journal on Numerical Analysis, 35:1893 —1916, 1998.

[7] C. Bernardi, Y. Maday, and A.T. Patera. A new non-conforming approach to domain decomposition: The mortar element method. In J-L. Lions H. Brezis, editor, Collège de France Seminar, pages 13—51. Pitman, 1994.

[8] S.C. Brenner and R. Scott. The mathematical theory of finite element methods, volume 15. Springer, 2008.

[9] A. Chernov, M. Maischak, and E. P. Stephan. hp-mortar boundary element method for two-body contact problems with friction. Mathematical Methods in the Applied Sciences, 31 (17) :2029—2054, 2008.

[10] P. G. Ciarlet. The finite element method for elliptic problems. Elsevier, 1978.

[11] T. Cichosz and Mr. Bischoff. Consistent treatment of boundaries with mortar contact formulations using dual Lagrange multipliers. Computer Methods in Applied Mechanics and Engineering, 200 (9) :1317—1332, 2011.

[12] Z. Dost́al, D. Horcak, and D. Stefanica. A scalable feti—dp algorithm with non-penetration mortar conditions on contact interface. Journal of Computational and Applied Mathematics, 231 (2) :577—591, 2009.

[13] G. Drouet and P. Hild. An accurate Local Average Contact (LAC) method for nonmatching meshes in 2D and 3D. (hal-01143753), April 2015.

[14] G. Drouet and P. Hild. Optimal convergence for discrete variational modelling inequalities Signorin contact in 2D and 3D without additional assumptions on the unknown contact set. SIAM Journal on Numerical Analysis, to appear (preprint available at www.math.univ-toulouse.fr/~phild/).

[15] A. Ern and J.L. Guermond. Theory and practice of finite elements. Springer-Verlag New York, Inc., 2004.

[16] P. Farah, A Popp, and W.A. Wall. Segment-based vs. element-based integration for mortar methods in computational contact mechanics. Compute. Mech., 55 (1) :209—228, 2015.

[17] G. Fichera. Elastostatic problems with unilateral wines: the problem of Signorin with ambiguous conditions around them. Atti Accad. Naz. Lincie Mrs. Cl. Sci. Son. Matt. Nature. Sez.I, 7 (8) :91—140, 1963/1964.

[18] S. Hartmann and E. Ramm. A mortar-based contact formulation for non-linear dynamics using dual Lagrange multipliers. Finite Elements in Analysis and Design, 44 (5) :245—258, 2008.

[19] J. Haslinger, I. Hlavacek, and J. Necas. Numerical methods for unilateral problems in solid mechanics, volume 4 of Handbook of Numerical Analysis. North Holland, Amsterdam, 1996.

[20] P. Hild. Unilateral contact problems and incompatible finite element meshes. PhD thesis, Paul Sabatier University, (www.math.univ-toulouse.fr/>>phild/), 1998.

[21] P. Hild. Numerical implementation of two nonconforming finite element methods for unilateral contact. Computer Methods in Applied Mechanics and Engineering, 184 (1) :99—123, 2000.

[22] N. Kikuchi and J.T. Oden. Contact problems in elasticity: a study of variational inequalities and finite element methods. SIAM, 1988.

[23] R. Krause. A nonsmooth multiscale method for solving frictional two-body contact problems in 2D and 3D with multigrid efficiency. SIAM Journal on Scientific Computing, 31 (2) :1399—1423, 2009.

[24] T. A. Laursen. Computational contact and impact mechanics: fundamentals of modeling interfacial phenomena in nonlinear finite element analysis. Springer, 2002.

[25] T. A. Laursen, M. A. Puso, and J. Sanders. Mortar contact formulations for deformable—deformable contact: past contributions and new extensions for enriched and embedded interface formulations. Computer methods in applied mechanics and engineering, 205:3 —15, 2012.

[26] J.L. Lions and E. Magenes. Problems with non-homogeneous boundaries and applications, volume 1. Dunod, 1968.

[27] Mr. Moussaoui and K. Khodja. Regularity of the solutions of a mixed Dirichlet—Signorin problem in a flat polygonal domain. Communications in partial differential equations, 17 (5-6) :805—826, 1992.

[28] A. Popp, B. I. Wohlmuth, M. W. Gee, and W. A. Wall. Dual quadratic mortar finite element methods for 3D finite deformation contact. SIAM Journal on Scientific Computing, 34 (4) :B421—B446, 2012.

[29] Mr. A. Puso and T. A. Laursen. A mortar segment-to-segment frictional contact method for large deformations. Computer Methods in Applied Mechanics and Engineering, 193 (45-47) :4891—4913, 2004.

[30] Mr. A. Puso, T. A. Laursen, and J. Solberg. A segment-to-segment mortar contact method for quadratic elements and large deformations. Computer Methods in Applied Mechanics and Engineering, 197 (6) :555—566, 2008.

[31] L.R. Scott and S. Zhang. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp., 54:483 —493, 1990.

[32] A. Signorin. Questions about linear and semilinearizzata elastostatics. Give back. Math, 18:381 —402, 1959.

[33] I. Temizer. A mixed formulation of mortarbased contact with friction. Computer Methods in Applied Mechanics and Engineering, 255:183-195, 2013.

[34] I. Temizer, P. Wriggers, and T.J.R. Hughes. Three-dimensional mortarbased frictional contact treatment in isogeometric analysis with NURBS. Computer Methods in Applied Mechanics and Engineering, 209/ 212:115-128, 2012.

[35] H. Triebel. Interpolation theory, function spaces, differential operators. North Holland, 1978.

[36] Mr. Tur, F.J. Fuenmayor, and P. Wriggers. A mortar-based frictional contact formulation for large deformations using Lagrange multipliers. Computer Methods in Applied Mechanics and Engineering, 198 (37) :2860—2873, 2009.

[37] B.I. Wohlmuth. Variationally consistent discretization schemes and numerical algorithms for contact problems. Acta Numerica, 20:569 —734, 2011.

[38] B.I. Wohlmuth, A. Popp, M.W. Popp, M.W. Gee, and W.A. Wall. An abstract framework for a priory estimates for contact problems in 3D with quadratic finite elements. Computational Mechanics, 49 (6) :735—747, 2012.

[39] P. Wriggers. Computational contact mechanics. Springer, 2006.