6. Key calculation options in Code_Aster#

Below are the main Code_Aster options specific to the workflow of the algorithm [éq 5-1], [éq 5-2] above. On the other hand, we will not mention the options that are not specific to Code_Aster and that are used in the calculation:

  • Boundary conditions:

Linear Fourier

RIGI_THER_COET_R

RIGI_THER_COET_F \(\underset{{\mathrm{\partial }}_{1}\Omega }{\mathrm{\int }}\gamma {T}^{n+1}\psi d\Gamma\)

Nonlinear Fourier

RIGI_THER_FLUTNL \(\underset{{\mathrm{\partial }}_{3}\Omega }{\mathrm{\int }}\alpha \text{'}({T}^{n}){T}^{n+1}\psi d\Gamma\)

CHAR_THER_FLUTNL \(\underset{{\mathrm{\partial }}_{3}\Omega }{\mathrm{\int }}(\alpha ({T}^{n})\mathrm{-}\alpha \text{'}({T}^{n}){T}^{n})\psi d\Gamma\)

  • Elementary matrices and second members:

RIGI_THER_TRANS

\(\underset{\Omega }{\int }k({T}^{n})\text{grad}{T}^{n+1}\text{.}\text{grad}\psi d\Omega\)

RIGI_THER_CONV_T

\(\underset{\Omega }{\mathrm{\int }}\omega V\text{.}\text{grad}{T}^{n+1}\psi d\Omega\)

CHAR_THER_TNL

\(\begin{array}{}\underset{\Omega }{\int }\left[k({T}^{n})-k({T}^{n-1})\right]\text{grad}{T}^{n}\text{.}\text{grad}\psi d\Omega \\ +\underset{\Omega }{\int }\omega \text{V}\text{.}\text{grad}\tau ({u}^{n})\psi d\Omega -\underset{\Omega }{\int }V\text{.}\text{grad}{u}^{n}\psi d\Omega \end{array}\)