3. Integrals to be calculated. Shell kinematics.#
For each node, the program calculates the coefficients of the 6 linear relationships [éq 2-8] that connect:
the 6 degrees of freedom of the \(\text{P}\) beam node (geometrically confused with the center of gravity \(G\) of the cross section of the shell mesh)
with the degrees of freedom of**all* the nodes in the shell edge mesh list.
These linear relationships are dualized, like all linear relationships that come from, for example, the LIAISON_DDL keyword in AFFE_CHAR_MECA. They are built as for the 3D-beam connection from the assembly of elementary terms.
Linear shell or plate kinematics in thickness:
\(u(M)=u(Q)+(\theta (Q)\wedge n)\text{.}{y}_{3}\)
\(u\) is the displacement vector of the mean surface in \(Q\),
\(n\) is the normal vector to the mean surface of the shell in \(Q\),
\(\theta\) is the rotation vector in \(Q\) of the normal in the directions \({t}_{1}\text{et}{t}_{2}\) of the tangential plane
\({y}_{3}\) is the coordinate in the thickness (\({y}_{3}\mathrm{\in }\left]\mathrm{-}\frac{h}{2},\frac{h}{2}\right[\)).
3.1. Calculation of the average displacement on the S section#
The aim is to calculate the integral \({\int }_{S}u\text{dS}\), where \(u\) is the shell displacement (comprising 6 ddl per node), \(S\) is the shell edge of the connecting cross section.
The average displacement on section \(S\) is written as:
\({\int }_{s}u(M)\text{ds}=h{\int }_{l}u(Q)\text{ds}+{\int }_{l}(\theta (Q)\wedge n)({\int }_{-h/2}^{h/2}{y}_{3}{\text{dy}}_{3})\text{ds}\)
Be \({\int }_{s}u(M)\text{ds}=h{\int }_{l}u(Q)\text{ds}\)
In this expression, metric variations in the thickness of the shell are overlooked.
3.2. Calculation of the average rotation of the S section#
\(\begin{array}{}{\int }_{s}\mathrm{GM}\wedge u(M)\text{ds}={\int }_{l}{\int }_{-h/2}^{h/2}(\mathrm{GQ}+{y}_{3}n(Q))\wedge (u(Q)+\theta (Q)\wedge n(Q)\text{.}{y}_{3}){\text{dsdy}}_{3}\\ =h{\int }_{l}\mathrm{GQ}\wedge u(Q)\text{ds}+{\int }_{l}\mathrm{GQ}\wedge (\theta (Q)\wedge n(Q))\text{ds}{\int }_{-h/2}^{h/2}{y}_{3}{\text{dy}}_{3}\\ +{\int }_{l}n(Q)\wedge u(Q)({\int }_{-h/2}^{h/2}{y}_{3}{\text{dy}}_{3})\text{ds}+{\int }_{l}n(Q)\wedge (\theta (Q)\wedge n(Q)){\int }_{-\frac{h}{2}}^{\frac{h}{2}}{y}_{3}^{2}{\text{dy}}_{3}\text{.}\text{ds}\end{array}\)
Be \({\int }_{s}\mathrm{GM}\wedge u(M)\text{ds}=h{\int }_{l}\mathrm{GQ}\wedge u(Q)\text{ds}+\frac{{h}^{3}}{\text{12}}{\int }_{l}n(Q)\wedge (\theta (Q)\wedge n(Q))\text{ds}\text{.}\)
3.3. Calculation of the inertia tensor#
The inertia tensor is defined by [R3.03.03]:
\(I(\Omega )={\int }_{s}\mathrm{GM}\wedge (\Omega \wedge \mathrm{GM})\text{ds}\)
asking: \(\mathrm{GM}=\mathrm{GQ}+n(Q)\text{.}{y}_{3}\text{.}\)
We get: \(I(\Omega )=h{\int }_{l}\mathrm{GQ}\wedge (\Omega \wedge \mathrm{GQ})\text{ds}+\frac{{h}^{3}}{\text{12}}{\int }_{l}n(Q)\wedge (\Omega \wedge n(Q))\text{ds}\)
3.4. Implementation of the method#
The coefficients of linear relationships are calculated in two stages:
calculation of elementary quantities on the elements in the list of shell edge cells (mesh of the type SEG2 or SEG3):
we calculate the 9 terms:
\({\int }_{\text{elt}}\text{ds};{\int }_{\text{elt}}\text{xds};{\int }_{\text{elt}}\text{yds};{\int }_{\text{elt}}{x}^{2}\text{ds};{\int }_{\text{elt}}{y}^{2}\text{ds};{\int }_{\text{elt}}{z}^{2}\text{ds};{\int }_{\text{elt}}\text{xyds};{\int }_{\text{elt}}\text{xzds};{\int }_{\text{elt}}\text{yzds}\)
as well as terms from \(I(\Omega )\text{:}\frac{{h}^{3}}{\text{12}}{\int }_{l}n\wedge (\Omega \wedge n)\text{ds}\)
This allows us to calculate: \(\frac{{h}^{3}}{\text{12}}{\int }_{l}({n}_{y}^{2}+{n}_{z}^{2})\text{ds},\frac{{h}^{3}}{\text{12}}{\int }_{l}{n}_{x}{n}_{y}\text{ds},\text{etc}\text{.}\text{.}\text{.}\)
summation of these quantities on \((S)\), hence the calculation of:
\(A=\mid S\mid\)
\(G\) position
inertia tensor \(I\)
knowing \(G\), elementary calculation on the elements in the list of shell edge cells of:
\({\mathrm{\int }}_{\text{elt}}{N}_{i}\text{ds};{\mathrm{\int }}_{\text{elt}}{\text{xN}}_{i}\text{ds};{\mathrm{\int }}_{\text{elt}}{\text{yN}}_{i}\text{ds};{\mathrm{\int }}_{\text{elt}}{\text{zN}}_{i}\text{ds}\) where \(\begin{array}{c}\text{GM}\mathrm{=}\left\{x,y,z\right\}\\ {N}_{i}\mathrm{=}\text{fonctions de forme de l'élément}\end{array}\)
(It should simply be noted that in this case, the integrals on the edge elements are to be multiplied by the thickness of the shell: \(\underset{\text{elt}}{\int }{N}_{i}\text{ds}=h\underset{l}{\int }{N}_{i}\text{dl}\) where \(l\) represents the curvilinear abscissa of the mean fiber of the shell edge element).
In addition, we add additional terms from: \(\frac{{h}^{3}}{\text{12}}{\int }_{l}n(Q)\wedge (\Omega \wedge n(Q))\text{ds}\)
By noting \(n=\mid \begin{array}{c}{n}_{x}\\ {n}_{y}\\ {n}_{z}\end{array}\) and \(\theta =\mid \begin{array}{c}{\theta }_{x}\\ {\theta }_{y}\\ {\theta }_{z}\end{array}\) in the global frame of reference we get:
\(n(Q)\wedge (\theta \wedge n(Q))=\mid \begin{array}{c}({n}_{y}^{2}+{n}_{z}^{2}){\theta }_{x}-{n}_{x}{n}_{y}{\theta }_{y}-{n}_{x}{n}_{z}{\theta }_{z}\\ -{n}_{x}{n}_{y}{\theta }_{x}+({n}_{x}^{2}+{n}_{z}^{2}){\theta }_{y}-{n}_{y}{n}_{z}{\theta }_{z}=A\theta \\ -{n}_{x}{n}_{z}{\theta }_{x}-{n}_{y}{n}_{z}{\theta }_{y}+({n}_{x}^{2}+{n}_{y}^{2}){\theta }_{z}\end{array}\)
so:
\(\frac{{h}^{3}}{\text{12}}{\int }_{l}n(Q)\wedge (\Omega \wedge n(Q))\text{ds}=\frac{{h}^{3}}{\text{12}}\sum _{\text{el}}({\int }_{\text{el}}A(s){N}_{j}(s)\text{ds}){\theta }_{j}\)
« assembly » of the terms calculated above to obtain, for each of the nodes of the edge cells, the coefficients of the terms of the linear relationships.