Reference problem ===================== The damage, :math:`D(t)`, is calculated from the stress tensor data, :math:`\sigma (t)`, and the cumulative plastic deformation, :math:`p(t)`. .. csv-table:: ":math:`\dot{D}=\frac{1}{{(1-D)}^{\mathrm{2s}}}{\left[\frac{1}{\mathrm{3ES}}(1+\nu ){\sigma }_{\mathrm{eq}}^{2}+\frac{3}{\mathrm{2ES}}(1-2\nu ){\sigma }_{H}^{2}\right]}^{s}\dot{p}` ", "if :math:`p>{p}_{d}`" ":math:`D=0` ", "otherwise" :math:`{\sigma }_{\mathrm{eq}}` is the equivalent von Mises stress :math:`{\sigma }_{H}` is the hydrostatic stress :math:`{p}_{d}` represents the damage threshold :math:`S` is a material characteristic (:math:`\mathrm{MPa}`) :math:`s` is a material characteristic Material properties -------------------- .. csv-table:: ":math:`\mathrm{Temp}(°C)` "," :math:`E(\mathrm{MPa})` "," :math:`\nu` "," :math:`S(\mathrm{MPa})`" "0. ", "2.E+5", "0. ", "7." "20. ", "2.E+5", "0. ", "7." "40. ", "2.E+5", "0. ", "7." :math:`{p}_{d}=0.02` Modeling A ~~~~~~~~~~~~~~~ In this modeling, we check the Lemaître-Sermage damage calculation with respect to the reference solution given in [:ref:`V9.01.109 `]. The values of the exponent :math:`s` and :math:`S` in the expression of generalized Lemaître damage apply to: :math:`s=1.0` and :math:`S=7.0` B modeling ~~~~~~~~~~~~~~~ In this second modeling, the Lemaître-Sermage damage calculation is verified with respect to an analytical solution obtained by applying the algorithms presented in the reference document [:ref:`R7.04.01 `]. The values of the exponent :math:`s` and :math:`S` in the expression of generalized Lemaître damage apply to: :math:`s=1.003` and :math:`S=7.0` Loading history ---------------------- .. csv-table:: ":math:`t` ", "43.11", "100. ", "100. ", "10000. ", "2000. ", "21000. ", "2000. ", "2200. ", "22400." ":math:`{\sigma }_{\mathrm{xx}}(t)` ", "300. ", "300. ", "300. ", "300. ", "300. ", "300. ", "300. ", "300. ", "300." ":math:`{\sigma }_{\mathrm{yy}}(t)` ", "0. ", "0. ", "0. ", "0. ", "0. ", "0. ", "0. ", "0. ", "0." ":math:`{\sigma }_{\mathrm{zz}}(t)` ", "0. ", "0. ", "0. ", "0. ", "0. ", "0. ", "0. ", "0. ", "0." ":math:`{\sigma }_{\mathrm{xy}}(t)` ", "0. ", "0. ", "0. ", "0. ", "0. ", "0. ", "0. ", "0. ", "0." ":math:`{\sigma }_{\mathrm{xz}}(t)` ", "0. ", "0. ", "0. ", "0. ", "0. ", "0. ", "0. ", "0. ", "0." ":math:`{\sigma }_{\mathrm{yz}}(t)` ", "0. ", "0. ", "0. ", "0. ", "0. ", "0. ", "0. ", "0. ", "0." ":math:`\mathrm{Temp}` ", "20. ", "20. ", "20. ", "20. ", "20. ", "20. ", "20. ", "20. ", "20." .. csv-table:: ":math:`t` "," :math:`p(t)` **(Cumulative plastic deformation)**" "43.11", "0.019996" "100. ", "0.046384" "1000. ", "0.46384" "10000. ", "4.6384" "20000. ", "9.2768" "21000. ", "9.74064" "2000. ", "10.20448" "22200. ", "10.297248" "22400. ", "10.390016"