1. Reference problem#

The damage \(D(t)\) is calculated from the data of the stress tensor \(\sigma (t)\) and the cumulative plastic deformation \(p(t)\).

\(\dot{D}=\frac{1}{{(1-D)}^{2}}\left[\frac{1}{\mathrm{3ES}}(1+\nu ){\sigma }_{\mathrm{eq}}^{2}+\frac{3}{\mathrm{2ES}}(1-2\nu ){\sigma }_{H}^{2}\right]\dot{p}\)

if \(p>{p}_{d}\)

\(D=0\)

otherwise

\({\sigma }_{\mathrm{eq}}\) is the equivalent von Mises stress

\({\sigma }_{H}\) is the hydrostatic stress

\({p}_{d}\) represents the damage threshold

\(S\) is a material characteristic (\(\mathrm{MPa}\))

The total damage \(D=\underset{i=1}{\overset{N}{\Sigma }}D({t}_{i})\) is also calculated.

1.1. Material properties#

\(\mathrm{Temp}(°C)\)

\(E(\mathrm{MPa})\)

\(\nu\)

\(S(\mathrm{MPa})\)

2.E+5

12/07/09

2.E+5

2.E+5

\({p}_{d}=0.02\)

1.2. Boundary conditions and loading#

Loading history:

\(t\)

43.11

\({\sigma }_{\mathrm{xx}}(t)\)

\({\sigma }_{\mathrm{yy}}(t)\)

\({\sigma }_{\mathrm{zz}}(t)\)

\({\sigma }_{\mathrm{xy}}(t)\)

\({\sigma }_{\mathrm{xz}}(t)\)

\({\sigma }_{\mathrm{yz}}(t)\)

\(\mathrm{Temp}\)

\(t\)

\(p(t)\) (Cumulative plastic deformation)

43.11

0.019996

0.046384

0.46384

4.6384

9.2768

9.74064

10.20448

10.297248

10.390016