2. Benchmark solution#

2.1. Calculation method#

The problem is spherically symmetric. We therefore place ourselves in the \((r,\mathrm{\theta },\mathrm{\varphi })\) frame of reference. We consider the case where \({p}_{\mathit{imp}}\) does not depend on \(\mathrm{\theta }\), nor on \(\mathrm{\varphi }\). This hypothesis allows us to express the analytical solution for the problem in a harmonic regime and semi-analytic for the transient problem by exploiting the symmetry of the problem. In fact, by the symmetry in the problem, the structural displacement is written as:

(2.1)#\[ {u} _ {s} (r,\ mathrm {\ theta},\ mathrm {\ varphi}, t) =u (r, t) {e} _ {r}\]

And the sound pressure in the fluid:

(2.2)#\[ {p} _ {f} (r,\ mathrm {\ theta},\ mathrm {\ varphi}, t) =p (r, t) =p (r, t)\]

The linearized Green-Lagrange strain tensor is therefore given by:

(2.3)#\[ \ mathrm {\ epsilon} (r, t) =\ frac {\ partial u (r, t)} {\ partial r} (r, t) {e} _ {r}\ otimes {e} _ {r} _ {r} +\ frac {u (r, t)} +\ frac {u (r, t)} {\ frac {u, t)} {r, t)} {\ frac {u (r, t)} {r} _ {\ mathrm {\ theta}} + {e}} _ {\ mathrm {\ varphi}}\ otimes {e} _ {\ mathrm {\ varphi}}}\ right)\]

With an isotropic elastic material, the Cauchy stress is then equal to:

\[\]

: label: eq-4

mathrm {sigma} (r, t) =left ((mathrm {lambda} +2mathrm {mu})frac {partial u (r, t)} {partial r}} {partial r} +2mathrm {lambda} +2mathrm {lambda}lambda}frac {lambda}frac {u (r, t)} {r}otimes {e} _ {r} +left (mathrm {lambda}frac {partial u (r, t)} {partial r} + (mathrm {lambda} +2mathrm {mu})frac {mu})frac {u (r, t)} {r, t)} {r, t)} {r}right)left ({e} _ {mathrm {theta}}}otimes {e} _ {mathrm {theta}} + {e}} _ {mathrm {varphi}}otimes {e} _ {mathrm {varphi}}right)

\(\mathrm{\lambda }\) and \(\mathrm{\mu }\) being the Lamé coefficients.

The expression for the conservation of momentum allows us to write:

\[\]

: label: eq-5

frac {{r} ^ {2}} {{c}} {{c} _ {s} ^ {2}}frac {{partial} ^ {2}} u (r, t)} {partial {t} ^ {2}}} - {r} {2}} - {r}}} - {r} {2}}} -rfrac {partial u (r, t)}} {partial r} +2u (r, t) =0

With the speed of sound propagation in structure \({c}_{s}\) which is equal to:

(2.4)#\[ {c} _ {s} ^ {2} =\ frac {\ mathrm {\ lambda} +2\ mathrm {\ mu}} {{\ mathrm {\ rho}}} _ {s}}\]

\(\mathrm{\lambda }\) and \(\mathrm{\mu }\) being the Lamé coefficients.

(2.5)#\[ \ frac {1} {{c} _ {f} ^ {2}}}\ frac {{\ partial} ^ {2} p} {\ partial {t} ^ {2}} (t, x) -\ mathrm {\ Delta} p (t, x) =0\]

In spherical coordinates, the sound pressure propagation equation is written as:

(2.6)#\[ \ frac {1} {{c} _ {f} ^ {2}}}\ frac {{\ partial} ^ {2} p} {\ partial {t} ^ {2}} (r, t) -\ frac {{\ partial}} ^ {2}}}\ frac {2}} {\ partial} ^ {2}}} (r, t) -\ frac {2} {r} {r} {r}\ frac {\ partial} ^ {2}}} (r, t) -\ frac {2} {r} {r}}\ frac {\ partial} {\ partial}} partial p} {\ partial r} (r, t) =0\]

The condition of continuity of the normal stress on the surface \({\mathrm{\Gamma }}_{\mathit{ext}}\) is written in the form of a scalar equation:

:math:`(mathrm{lambda }+2mathrm{mu }){frac{partial u(t)}{partial r}

}_{r={R}_{mathit{ext}}}+2mathrm{lambda }{frac{u(t)}{{R}_{mathit{ext}}}

}_{r={R}_{mathit{ext}}}=-{p(t)

}_{r={R}_{mathit{ext}}}`

The condition for the continuity of normal acceleration on surface \({\mathrm{\Gamma }}_{\mathit{ext}}\) is written as:

:math:`{frac{{partial }^{2}u(t)}{partial {t}^{2}}

}_{{R}_{mathit{ext}}}=-{frac{1}{{mathrm{rho }}_{f}}frac{partial p(t)}{partial r}

}_{{R}_{mathit{ext}}}`

The pressure is imposed on surface \({\mathrm{\Gamma }}_{\text{int}}\) and is written as:

:math:`(mathrm{lambda }+2mathrm{mu }){frac{partial u(t)}{partial r}

}_{r={R}_{text{int}}}+2mathrm{lambda }{frac{u(t)}{{R}_{mathit{ext}}}

}_{r={R}_{text{int}}}=-{p}_{mathit{imp}}(t)`

Finally, we apply the Sommerfeld condition (non-reflection of waves) on the outer surface \({\mathrm{\Gamma }}_{\mathit{bgt}}\):

(2.7)#\[ \ underset {r\ to\ mathrm {\ infty}} {\ mathrm {lim}}}\ left (\ frac {1} {{c} _ {f}}\ frac {\ partial p} {\ partial p} {\ partial p} {\ partial p} {\ partial r}}\ frac {\ partial p} {\ partial r}} (r, t)\ right) =0\]

2.2. Harmonic resolution#

We are interested here in soliciting the form \({p}_{\mathit{imp}}(t)={P}_{\mathit{imp}}{e}^{i\mathrm{\omega }t}\) and we are looking for the solution of the form \(u(r,t)=U(r){e}^{i\mathrm{\omega }t}\) and \(p(r,t)=P(r){e}^{i\mathrm{\omega }t}\). In this form, partial time derivatives are trivial. For example:

(2.8)#\[ u (r, t) =U (r) {e} ^ {i\ mathrm {\ omega} t}\ to\ frac {\ partial u} {\ partial t} =i\ mathrm {\ omega} U (r) {\ omega} U (r) {e} ^ {e} ^ {e} ^ {e} ^ {e} ^ {e} ^ {i\ mathrm {\ omega} t}\ to\ frac {{\ partial} ^ {2} u} {\ partial t} u} {\ partial t} ^ {2}} =-i {\ mathrm {\ omega}}} ^ {2} U (r) {e} ^ {i\ mathrm {\ omega} t}\]

The problem comes down to finding \(U\) and \(P\) which are solutions to the following problem:

(2.9)#\[ {r} ^ {2}\ frac {{d}} ^ {2} U} {{\ mathit {dr}} ^ {2}} +2r\ frac {dU} {\ mathit {dr}}} +\ left (\ left (\ frac {{\ mathrm {\ omega}}} {{\ mathrm {\ omega}}} {\ mathrm {\ omega}}} ^ {2}}} {r} ^ {2}}} +\ left (\ frac {{\ mathrm {\ omega}}} ^ {2}}} {r} ^ {2}}} {r} ^ {2}} {r} ^ {2}}} +\ left (\ frac {{d}}}} +\ left (\ frac {{d}}\ right) U=0\]

And:

(2.10)#\[ \ frac {{d} ^ {2} P} {{\ mathit {dr}} {{\ mathit {dr}}}} ^ {2}} +\ frac {\ mathit {dP}} {\ mathit {dr}}} {\ mathit {dr}}}} +\ frac {{\ mathit {dr}}}} +\ frac {{\ mathit {dr}}}} +\ frac {{\ mathit {dr}}}} +\ frac {{\ mathit {dr}}}} +\ frac {{\ mathit {dr}}}} +\ frac {{\ mathit {dr}}}} +\ frac {\ mathit {dr}}} +\ frac {{\ mathit {dr}\]

The solution to the problem () is written as:

(2.11)#\[ U (r) =A (\ mathrm {\ omega}) {j} _ {1}\ left (\ frac {\ mathrm {\ omega}} {{c} _ {s}} r\ right) +B (\ mathrm {\ omega}) {\ mathrm {\ omega}) {\ mathrm {\ omega}) +B (\ mathrm {\ omega}) +B (\ mathrm {\ omega}) +B (\ mathrm {\ omega}}) {\ mathrm {\ omega}) +B (\ mathrm {\ omega}) {\ mathrm {\ omega}) +B (\ mathrm {\ omega}}) {\ mathrm {\ omega}) +B (\ mathrm {\ omega}}) {\} r\ right)\]

Where \({j}_{1}\) and \({y}_{1}\) are, respectively, the first-order spherical Bessel function of the first type and the first-order spherical Bessel function of the second type.

The solution to the problem () is written as:

(2.12)#\[ P (r) =C (\ mathrm {\ omega})\ frac {{e} ^ {-i\ mathrm {\ omega} r/ {c} _ {f}}} {r}} {r} +D (\ mathrm {\ omega})\ frac {\ omega})\ frac {{e} ^ {e} ^ {i\ mathrm {\ omega} r/ {c}} _ {f}}} {f}} {r}} {r}\]

To find the values \(A(\mathrm{\omega })\), \(B(\mathrm{\omega })\), \(C(\mathrm{\omega })\), and \(D(\mathrm{\omega })\). Boundary conditions are used.

In equation (), the term in \(\frac{{e}^{-i\mathrm{\omega }r/{c}_{f}}}{r}\) corresponds to the wave propagating radially to infinity while the other term \(\frac{{e}^{i\mathrm{\omega }r/{c}_{f}}}{r}\) is the reflection of the wave (towards the source). As we impose a non-reflection condition, on the outer edge, this second contribution is zero and we therefore have \(D(\mathrm{\omega })=0\).

2.3. Reference quantities and results#

To calculate the solution, you need to have an estimate of the Bessel functions. For that we use scipy, (special functions). The displacement is recovered at two points: Uint on the surface of the structure \({\mathrm{\Gamma }}_{\text{int}}\), Uext on the surface IFS \({\mathrm{\Gamma }}_{\text{ext}}\). The pressure is recorded Pext on the surface IFS \({\mathrm{\Gamma }}_{\text{ext}}\) and Pbgt on the outer surface \({\mathrm{\Gamma }}_{\text{bgt}}\) .

Real part

Imaginary part

_images/1000020100000280000001E08F60D4CE2EB6CCF0.png _images/1000020100000280000001E0D87C3C0FB7AA765E.png
_images/1000020100000280000001E0ADC02A993FFE55DB.png _images/1000020100000280000001E07EEAA6F6D400B7E9.png
_images/1000020100000280000001E07C7FD3DC04E4B3B2.png _images/1000020100000280000001E00605C02F6BB9ADF2.png
_images/1000020100000280000001E0E999A63DBADD9688.png _images/1000020100000280000001E0A87DDBC86B4AE8B5.png

2.4. Uncertainties about the solution#

None, the solution is analytical.