Benchmark solution ===================== Calculation method used for the reference solution -------------------------------------------------------- The pressure field :math:`p` verifies the Helmholtz equation along the :math:`x` axis: :math:`\frac{{d}^{2}p}{{\mathit{dx}}^{2}}+{k}^{2}p=0`, :math:`x\in [\mathrm{0,}L]` In :math:`x=0`, we find conditions with the imposed speed limits :math:`{V}_{n}^{s}` and impedance :math:`{Z}_{\mathit{n0}}` limits: :math:`p(x=0)={Z}_{\mathit{n0}}\left({V}_{n}(x=0)-{V}_{n}^{s}\right)` This gives in terms of imposed admittance: :math:`{V}_{n}(x=0)={V}_{n}^{s}+{A}_{\mathit{n0}}p(x=0)` In :math:`x=L`, the impedance :math:`{Z}_{\mathit{nL}}` (or its opposite, the admittance :math:`{A}_{\mathit{nL}}`) is imposed: :math:`\frac{-\frac{\mathit{dp}}{\mathit{dx}}}{-i\rho \omega }={A}_{n}p` The pressure in the waveguide has the following form: :math:`p(x)={C}_{1}{\mathrm{e}}^{-\mathit{ikx}}+{C}_{2}{\mathrm{e}}^{\mathit{ikx}}` Thus, we can express the derivative of pressure: :math:`\frac{\mathit{dp}(x)}{\mathit{dx}}=-{\mathit{ikC}}_{1}{\mathrm{e}}^{-\mathit{ikx}}+{\mathit{ikC}}_{2}{\mathrm{e}}^{\mathit{ikx}}` The boundary conditions in :math:`x=0` allow you to write: :math:`-{\mathit{ikC}}_{1}+{\mathit{ikC}}_{2}=-i\rho \omega {V}_{n}^{s}-i\rho \omega {A}_{\mathit{n0}}({C}_{1}+{C}_{2})` The boundary condition in :math:`x=L` allows you to write: :math:`{\mathit{ikC}}_{1}{\mathrm{e}}^{-\mathit{ikL}}-{\mathit{ikC}}_{2}{\mathrm{e}}^{\mathit{ikL}}=-i\rho \omega {A}_{\mathit{nL}}({C}_{1}{\mathrm{e}}^{-\mathit{ikL}}+{C}_{2}{\mathrm{e}}^{\mathit{ikL}})` These last two relationships make it possible to write a system of equations whose resolution makes it possible to determine the constants :math:`{C}_{1}` and :math:`{C}_{2}` and therefore the particle pressure and speed at any point in the waveguide. For the sake of simplicity, the analytical expression for the coefficients :math:`{C}_{1}` and :math:`{C}_{2}` is not given here. Benchmark results ---------------------- We calculate the pressure at points :math:`A`, :math:`B`,, :math:`C`, and :math:`D`. Uncertainty about the solution --------------------------- * Analytical solution.