Benchmark solution ===================== Calculation method used for the reference solution -------------------------------------------------------- The general analytical solution for a waveguide is written as: * for pressure: .. math:: :label: eq-1 p (x, y, z) =A\ mathrm {exp} (\ mathit {ikx}) +B\ mathrm {exp} (-\ mathit {ikx}) * for the vibratory speed: .. math:: :label: eq-2 V=-\ frac {1} {{\ rho} _ {0} {0} {c}} _ {0}}\ left (A\ mathrm {exp}) (\ mathit {ikx}) -\ mathit {Bexp} (-\ mathit {bexp}} (-\ mathit {ikx})\ left (A\ mathrm {exp}) (\ mathit {ikx}) -\ mathit {bexp} (-\ mathit {bexp}} (-\ mathit {ikx}) (-\ mathit {ikx}) (-\ mathit {ikx}) * A and B are determined by the boundary conditions: .. math:: :label: eq-3 \ text {En} x=0\ to {V} _ {n} = {V} _ {n0} .. math:: : label: eq-4 \ text {En} x=L\ to p (L, y, z) =ZV (L, y, z)\ cdot {n} _ {L} This results in: .. math:: : label: eq-5 A=B\ left (\ frac {Z- {\ rho} _ {0} {\ rho} _ {0}} {Z+ {\ rho} _ {0}} _ {0}}\ right)\ mathrm {exp} (-2\ mathit {iL}) And: .. math:: :label: eq-6 B=\ frac {{\ rho} _ {0} {c} _ {0} {c} _ {V}}} {\ left (\ frac {Z- {\ rho} _ {0} {c} _ {0} _ {0}} _ {0}} {0}}\ right)\ mathrm {exp} (-2\ mathit {iL}}} {0}}\ right)\ mathrm {exp} (-2\ mathit {iL}}}) -1} In the case studied, the output of the guide is anechoic, :math:`Z={\rho }_{0}{c}_{0}` and therefore: .. math:: :label: eq-7 p (x, y, z) = {\ rho} _ {0} {c} _ {0} {V} _ {n}\ mathrm {exp} (-\ mathit {ikx}) V (x, y, z) =- {V} _ {n}\ mathrm {exp} (-\ mathit {ikx}) {e} _ {x} For acoustic intensity: .. math:: :label: eq-8 I=\ frac {1} {2} p {V} ^ {\ text {*}}} =\ frac {1} {2} {\ rho} _ {0} {c} _ {0} {c} _ {0} {V}} _ {V} _ {V} _ {V} _ {V} _ {V} _ {V} _ {V} _ {V} _ {V} _ {V} _ {V} _ {V} _ {V} _ {V} _ {V} _ {V} _ {V} _ {V} _ {V} That is, the active acoustic intensity is uniform throughout the guide and parallel to the axis. The natural frequencies are given for the guide closed at both ends by: .. math:: :label: eq-9 {f} _ {m, n, p} =\ frac {{c} _ {0}} {0}} {0}} {2} {\ left (\ frac {{m} ^ {2}}} {{I} _ {x} ^ {2}}} +\ frac {{p} ^ {2}}} +\ frac {{p} ^ {2}}} +\ frac {{p} ^ {2}}} +\ frac {{p} ^ {2}}} {{I} _ {z} ^ {2}}}\ right)} ^ {\ frac {1} {2}} Benchmark results ---------------------- Pressure at points :math:`A,B,C,D` (for A, B, C, D, E models). Acoustic intensity at points :math:`A,B,C,D` (for models A and C). Natural frequencies No. 2 to No. 9. Uncertainty about the solution --------------------------- Analytical solution Bibliographical references --------------------------- 1. BOUIZI A. Solving linear acoustic equations by a mixed finite element method - Thesis (1989).