Reference solution ===================== Calculation method used for the reference solution -------------------------------------------------------- We are based on an analytical result [:ref:`bib1 `]: In the case of two concentric spheres immersed in the same fluid, it is shown that the added mass induced by the fluid confined to the internal sphere :math:`({S}_{1})` is equal to: :math:`{m}_{a}=\frac{2}{3}{\rho }_{f}\pi \left[\frac{1+2{(\frac{{R}_{1}}{{R}_{2}})}^{3}}{1-{(\frac{{R}_{1}}{{R}_{2}})}^{3}}\right]{R}_{1}^{3}` If we assume that the sphere has only one degree of freedom following :math:`\mathrm{Oz}`, the natural mode of translation of the sphere :math:`({S}_{1})` following :math:`\mathrm{Oz}` is given by: :math:`f=\frac{1}{2\pi }\sqrt{\frac{\mathrm{2K}}{m+{m}_{a}}}` Digital application: .. csv-table:: ":math:`K={10}^{5}N/m`" ":math:`m=12\mathrm{kg}`" ":math:`{m}_{a}=329.17\mathrm{kg}`" ":math:`F=3.8534\mathrm{Hz}`" Bibliographical references --------------------------- 1. R.D. BLEVINS, "Formulas for Natural Frequency and Mode Shape," Ed. KRIEGER