Reference problem ===================== Geometry --------- .. image:: images/10000000000001360000010A5387FB2F1F17128C.png :width: 2.8134in :height: 2.3465in .. _RefImage_10000000000001360000010A5387FB2F1F17128C.png: Inner sphere :math:`({S}_{1})` has a radius :math:`{R}_{1}=0.35m`. Inner sphere :math:`({S}_{2})` has a radius :math:`{R}_{2}=0.45m`. Material properties ----------------------- Inner sphere :math:`({S}_{1})` is made of steel: :math:`{\rho }_{s}=7800\mathrm{kg}/{m}^{3}` :math:`E=2.1{10}^{11}\mathrm{Pa}` :math:`\nu =0.3` The fluid filling the volume between :math:`({S}_{1})` and :math:`({S}_{2})` is water with a density of :math:`{\rho }_{f}=\mathrm{1 000 }\mathrm{kg}/{m}^{3}` (equivalent thermal characteristics: :math:`\lambda =1`, :math:`{\rho }_{f}{C}_{p}=1000`). We go to model the fluid by 3D thermal modeling. Boundary conditions and loads ------------------------------------- A zero temperature is assumed at a point in the fluid mesh. The springs are embedded at the level of the massif at points :math:`{P}_{1}` and :math:`{P}_{2}`.