Benchmark solution ===================== Calculation method used for the reference solution -------------------------------------------------------- Direct modal calculation (without dynamic substructuring) **Calculation of natural modes in air:** With the option 'BANDE' of the operator CALC_MODES the first 4 natural frequencies of the air system (mass-spring system) are calculated: .. csv-table:: "mode 1:", "vibration of the two cylinders in phase according to :math:`\mathrm{Ox}`" "mode 2:", "vibration of cylinder No. 2 according to :math:`\mathrm{Oy}` (on the right)" "mode 3:", "vibration of the two cylinders in phase opposition according to :math:`\mathrm{Ox}`" "mode 4:", "vibration of cylinder No. 1 according to :math:`\mathrm{Oy}` (on the left)" These modes can be determined analytically [:ref:`bib1 `]. The Code_Aster calculation provides for natural frequencies in air: .. csv-table:: "mode 1:", ":math:`{f}_{1}=17.3555\mathrm{Hz}` ", "mode 2:", ":math:`{f}_{2}=18.2034\mathrm{Hz}`" "mode 3:", ":math:`{f}_{3}=42.6760\mathrm{Hz}` ", "mode 4:", ":math:`{f}_{4}=57.5418\mathrm{Hz}`" **Calculation of the mass matrix added on a modal basis:** On this modal basis, we calculate the 4th order added mass matrix with the operator CALC_MATR_AJOU [:external:ref:`U4.55.10 `] option 'MASS_AJOU' keyword MODE_MECA (lower triangular terms): .. csv-table:: ":math:`\mathrm{m11}=300.67\mathrm{kg}/m` "," :math:`\mathrm{m12}=0.001\mathrm{kg}/m`" ":math:`\mathrm{m13}=269.98\mathrm{kg}/m` "," :math:`\mathrm{m14}=0.009\mathrm{kg}/m`" ":math:`\mathrm{m22}=269.98\mathrm{kg}/m` "," :math:`\mathrm{m23}=0.009\mathrm{kg}/m`" ":math:`\mathrm{m24}=31.05\mathrm{kg}/m` "," :math:`\mathrm{m33}=301.71\mathrm{kg}/m`" ":math:`\mathrm{m34}=–0.011\mathrm{kg}/m` "," :math:`\mathrm{m44}=269.86\mathrm{kg}/m`" **Adding this matrix to the generalized mass matrix:** The matrix thus determined is added to the generalized mass matrix (operator COMB_MATR_ASSE [:ref:`U4.53.01 `]) and then the natural frequencies of the immersed structure are calculated with the operator CALC_MODES option 'PLUS_PETITE' [:ref:`U4.52.02 `]. The calculation finds the following natural frequencies: .. csv-table:: "mode 1:", ":math:`f{\text{'}}_{1}=15.8782\mathrm{Hz}` ", "mode 2:", ":math:`f{\text{'}}_{2}=16.7811\mathrm{Hz}`" "mode 3:", ":math:`f{\text{'}}_{3}=39.0389\mathrm{Hz}` ", "mode 4:", ":math:`f{\text{'}}_{4}=53.0488\mathrm{Hz}`" Benchmark results ---------------------- Natural frequencies determined by Code_Aster in a direct calculation. Bibliographical references --------------------------- 1. R. J GIBERT - Vibrations of Structures. Interactions with fluids. Eyrolles (1988).