Reference problem ===================== Geometry --------- We consider a cylinder with radius :math:`1\mathit{cm}` and height :math:`1\mathit{cm}` (i.e. a mesh corresponding to a square domain of :math:`1\mathit{cm}\mathrm{\times }\mathrm{1cm}`, the modeling being axisymmetric). Material properties ---------------------- Here, parameters corresponding to argillite are selected in order to obtain a realistic thermal pressurization coefficient. .. csv-table:: "Liquid water", "Density :math:`({\mathrm{kg.m}}^{-3})` Specific heat at constant pressure :math:`({\mathrm{J.K}}^{-1})` Dynamic viscosity of liquid water :math:`(\mathrm{Pa.s})` Coefficient of thermal expansion of liquid :math:`({K}^{-1})` (if constant, see next section) Compressibility :math:`({\mathit{Pa}}^{\mathrm{-}1})` "," :math:`{10}^{3}` :math:`4180` :math:`0.001` :math:`1.{10}^{-4}` :math:`{K}_{e}=5.{10}^{-10}`" "Solid", "Drained Young's Module :math:`E(\mathrm{Pa})` Poisson's ratio Coefficient of thermal expansion of solid :math:`({K}^{-1})` "," :math:`\mathrm{3,14}{10}^{9}` :math:`0.375` :math:`{10}^{-5}`" "Reference state", "Porosity Temperature :math:`(K)` Liquid pressure :math:`(\mathrm{Pa})` "," :math:`0.18` :math:`273` :math:`0`" "Homogenized coefficients", "Homogenized density :math:`({\mathrm{kg.m}}^{-3})` Biot coefficient Intrinsic permeability :math:`({m}^{2})` Thermal conductivity", ":math:`2410` :math:`0.6` :math:`{K}_{\text{int}}={10}^{-21}` :math:`{\lambda }_{T}=1.61`" Boundary conditions and loads ------------------------------------- .. image:: images/1000020100000211000001748F2E4FBB6F1EF336.png :width: 1.2528in :height: 1.0791in .. _RefImage_1000020100000211000001748F2E4FBB6F1EF336.png: We impose: * On the bottom and left edges: zero displacements, zero hydraulic flow, zero heat flow. These are symmetry conditions. * On the top and right edges: Total stress imposed on :math:`12\mathit{MPa}`, zero hydraulic flow, temperature imposed as a function of time :math:`T(t)` following a linear ramp such as: :math:`T(t)={T}_{0}+\frac{\Delta T}{{t}_{s}}` where :math:`{t}_{s}` corresponds to the simulation time (here :math:`{t}_{\mathit{sim}}\mathrm{=}\mathrm{1h}`) and :math:`\Delta T` the temperature variation imposed during this time (here :math:`\Delta T\mathrm{=}40°C`). Initial conditions -------------------- :math:`P(x)\mathrm{=}\mathrm{4MPa}` and :math:`T(x)\mathrm{=}{T}_{0}\mathrm{=}20°C` everywhere.