1. Reference problem#
1.1. Geometry#
Geometry is a square [1mx1m]
1.2. Material properties#
Elastic properties:
\(E\mathrm{=}150{10}^{6}\mathit{Pa}\)
\(\nu \mathrm{=}0.3\)
Parameters specific to the GonfElas model:
\({\beta }_{m}\mathrm{=}0.1142\)
Reference pressure \(A\mathrm{=}1.\mathit{Mpa}\)
Hydraulic properties:
Liquid water |
Density (\({\mathit{kg.m}}^{\mathrm{-}3}\)) Heat at constant pressure (\({\mathit{J.K}}^{\mathrm{-}1}\)) coefficient of thermal expansion of liquid (\({K}^{\mathrm{-}1}\)) Compressibility (\(\mathit{Pa}\mathrm{-}1\)) Viscosity (\(\mathit{Pa.s}\)) |
1.103 4180 10-4 5.10-10 10-3 |
Gas |
Molar mass (\(\mathit{kg.}{\mathit{Mol}}^{\mathrm{-}1}\)) Heat at constant pressure (\({\mathit{J.K}}^{\mathrm{-}1}\)) Viscosity (\(\mathit{Pa.s}\)) |
0.002 1000 9. 10-6 |
Skeleton |
Heat capacity at constant stress (\({\mathit{J.K}}^{\mathrm{-}1}\)) |
1000 |
Constants |
Ideal gas constant |
8,315 |
Homogenized coefficients |
Homogenized density (\({\mathit{kg.m}}^{\mathrm{-}3}\)) Biot coefficient Parameters of the Van-Genuchten model \(N\) \(\mathit{Pr}(\mathit{Mpa})\) \(\mathit{Sr}\) |
2000 1 1.61 16.106 0 |
Reference state |
Porosity Temperature (\(K\)) Capillary pressure (\(\mathit{Pa}\)) Gas pressure (\(\mathit{Pa}\)) |
0.366 303 0. 10 |
1.3. Initial conditions#
At \(t=0\):
\(\mathit{Pgaz}=1\mathit{atm}\)
\(S=\mathrm{0,5}\) (i.e. \(\mathit{Pc}=\mathrm{44,7}\mathit{Mpa}\) and \({p}_{w}=-44.6\mathit{Mpa}\))
Total compressive stress equal to -1 atm.
1.4. Boundary conditions and loads#
All trips are blocked at the edge (\(\mathit{DX}\mathrm{=}\mathit{DY}\mathrm{=}0\)).
The flows are zero.
The initial saturation is \(\text{50 \%}\): we increase the saturation and we follow the evolution of the total stress. By definition, swelling pressure is the stress obtained upon complete restoration.
To do this, a loading of capillary pressure decreasing linearly in \(\mathrm{1s}\) between \(\mathrm{44,7}\mathit{Mpa}\) and \(\mathrm{-}10\mathit{Mpa}\) is imposed on the entire domain.