1. Reference problem#

1.1. Geometry#

Geometry is a square [1mx1m]

1.2. Material properties#

Elastic properties:

\(E\mathrm{=}150{10}^{6}\mathit{Pa}\)

\(\nu \mathrm{=}0.3\)

Parameters specific to the GonfElas model:

\({\beta }_{m}\mathrm{=}0.1142\)

Reference pressure \(A\mathrm{=}1.\mathit{Mpa}\)

Hydraulic properties:

Liquid water

Density (\({\mathit{kg.m}}^{\mathrm{-}3}\)) Heat at constant pressure (\({\mathit{J.K}}^{\mathrm{-}1}\)) coefficient of thermal expansion of liquid (\({K}^{\mathrm{-}1}\)) Compressibility (\(\mathit{Pa}\mathrm{-}1\)) Viscosity (\(\mathit{Pa.s}\))

1.103 4180 10-4 5.10-10 10-3

Gas

Molar mass (\(\mathit{kg.}{\mathit{Mol}}^{\mathrm{-}1}\)) Heat at constant pressure (\({\mathit{J.K}}^{\mathrm{-}1}\)) Viscosity (\(\mathit{Pa.s}\))

0.002 1000 9. 10-6

Skeleton

Heat capacity at constant stress (\({\mathit{J.K}}^{\mathrm{-}1}\))

1000

Constants

Ideal gas constant

8,315

Homogenized coefficients

Homogenized density (\({\mathit{kg.m}}^{\mathrm{-}3}\)) Biot coefficient Parameters of the Van-Genuchten model \(N\) \(\mathit{Pr}(\mathit{Mpa})\) \(\mathit{Sr}\)

2000 1 1.61 16.106 0

Reference state

Porosity Temperature (\(K\)) Capillary pressure (\(\mathit{Pa}\)) Gas pressure (\(\mathit{Pa}\))

0.366 303 0. 10

1.3. Initial conditions#

At \(t=0\):

  • \(\mathit{Pgaz}=1\mathit{atm}\)

  • \(S=\mathrm{0,5}\) (i.e. \(\mathit{Pc}=\mathrm{44,7}\mathit{Mpa}\) and \({p}_{w}=-44.6\mathit{Mpa}\))

  • Total compressive stress equal to -1 atm.

1.4. Boundary conditions and loads#

All trips are blocked at the edge (\(\mathit{DX}\mathrm{=}\mathit{DY}\mathrm{=}0\)).

The flows are zero.

The initial saturation is \(\text{50 \%}\): we increase the saturation and we follow the evolution of the total stress. By definition, swelling pressure is the stress obtained upon complete restoration.

To do this, a loading of capillary pressure decreasing linearly in \(\mathrm{1s}\) between \(\mathrm{44,7}\mathit{Mpa}\) and \(\mathrm{-}10\mathit{Mpa}\) is imposed on the entire domain.