Benchmark solution ===================== Calculation method ------------------ Calculation of the conservation of air mass ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The conservation of the mass of gas is written as: .. _RefEquation 2.1.1-1: :math:`\frac{{\mathrm{dm}}_{\mathrm{air}}}{\mathrm{dt}}+d({M}_{\mathrm{as}}+{M}_{\mathrm{ad}})` eq 2.1.1-1 We write that the total mass of water and the total mass of air are conserved (because there is no water or gas flow at the edge) and we get: :math:`{m}_{\mathrm{air}}={m}_{\mathrm{as}}+{m}_{\mathrm{ad}}={S}_{0}({\rho }_{\mathrm{ad}}-{\rho }_{\mathrm{ad}}^{0})+(1-{S}_{0})({\rho }_{\mathrm{as}}-{\rho }_{\mathrm{as}}^{0})` therefore .. _RefEquation 2.1.1-2: :math:`d({m}_{\mathrm{as}}+{m}_{\mathrm{ad}})={S}_{0}d{\rho }_{\mathrm{ad}}+(1-{S}_{0})d{\rho }_{\mathrm{as}}` eq 2.1.1-2 :math:`d{\rho }_{\mathrm{as}}=\frac{{M}_{\mathrm{as}}^{\mathrm{ol}}}{\mathrm{RT}}{\mathrm{dp}}_{\mathrm{as}}` and :math:`d{\rho }_{\mathrm{ad}}=\frac{{M}_{\mathrm{ad}}^{\mathrm{ol}}}{{K}_{H}}{\mathrm{dp}}_{\mathrm{as}}` :math:`\frac{{\mathrm{dm}}_{\mathrm{air}}}{\mathrm{dt}}=d(\frac{{M}_{\mathrm{ad}}^{\mathrm{ol}}}{{K}_{H}}{S}_{0}+(1-{S}_{0})\frac{{M}_{\mathrm{as}}^{\mathrm{ol}}}{\mathrm{RT}}{\mathrm{dp}}_{\mathrm{as}})` Speed calculation: .. _RefEquation 2.1.1-3: :math:`\frac{{M}_{\mathrm{as}}}{{\rho }_{\mathrm{as}}}={\lambda }_{\mathrm{gz}}(-\nabla {p}_{\mathrm{as}})` eq 2.1.1-3 since :math:`{F}_{\mathrm{vp}}=0` and :math:`\nabla {p}_{\mathrm{vp}}=0` and :math:`{M}_{\mathrm{ad}}={\rho }_{\mathrm{ad}}{\lambda }_{\mathrm{lq}}(-\nabla {p}_{\mathrm{lq}})-{F}_{\mathrm{ad}}\nabla {C}_{\mathrm{ad}}` with :math:`{C}_{\mathrm{ad}}={\rho }_{\mathrm{ad}}` Like :math:`\nabla {p}_{\mathrm{lq}}=\nabla {p}_{w}+\nabla {p}_{\mathrm{ad}}=\nabla {p}_{\mathrm{ad}}=\frac{\mathrm{RT}}{{K}_{H}}\nabla {p}_{\mathrm{as}}` :math:`{M}_{\mathrm{ad}}={\rho }_{\mathrm{ad}}{\lambda }_{\mathrm{lq}}\frac{\mathrm{RT}}{{K}_{H}}(-\nabla {p}_{\mathrm{as}})-\frac{{M}_{\mathrm{ad}}^{\mathrm{ol}}}{{K}_{H}}{F}_{\mathrm{ad}}\nabla {p}_{\mathrm{as}}` [:ref:`éq 2.1.1-1 <éq 2.1.1-1>`] can then be simplified to the following form: :math:`C\frac{{\mathrm{dp}}_{\mathrm{as}}}{\mathrm{dt}}=Ld(\nabla {p}_{\mathrm{as}})` with :math:`C=\frac{{M}_{\mathrm{ad}}^{\mathrm{ol}}}{{K}_{H}}{S}_{0}+(1-{S}_{0})\frac{{M}_{\mathrm{as}}^{\mathrm{ol}}}{\mathrm{RT}}` and :math:`L={\rho }_{\mathrm{as}}^{0}{\lambda }_{\mathrm{gz}}+\frac{\mathrm{RT}}{{K}_{H}}{\rho }_{\mathrm{ad}}^{0}{\lambda }_{\mathrm{lq}}+\frac{{M}_{\mathrm{as}}^{\mathrm{ol}}}{{K}_{H}}{F}_{\mathrm{ad}}` Heat equation whose result is known. Benchmark results ---------------------- With the previous numerical values, we find: :math:`{p}_{\mathrm{as}}={10}^{5}\Rightarrow {p}_{\mathrm{ad}}^{0}=\frac{\mathrm{RT}}{{K}_{H}}{p}_{\mathrm{as}}^{0}=4992` :math:`{\rho }_{\mathrm{as}}^{0}=\frac{{M}_{\mathrm{as}}^{\mathrm{ol}}}{\mathrm{RT}}{p}_{\mathrm{as}}^{0}=0.4` and :math:`{\rho }_{\mathrm{ad}}^{0}=\frac{{M}_{\mathrm{ad}}^{\mathrm{ol}}}{\mathrm{RT}}{p}_{\mathrm{ad}}^{0}=0.02` :math:`{\rho }_{\mathrm{vp}}^{0}={\rho }_{\mathrm{vp}}={4.10}^{-3}` The constants of the heat equation are then: :math:`C=2.48{10}^{-6}` :math:`L=1.4{10}^{-16}` Uncertainties ------------ The uncertainties are quite large because the analytical solution is an approximate solution due to the linearization of the equations.