Reference problem ===================== .. image:: images/Shape1.gif .. _RefSchema_Shape1.gif: Geometry ---------- Cube geometry: Center :math:`O(0.\mathrm{,0}\mathrm{.}\mathrm{,0}\mathrm{.})` Point :math:`A(0.5\mathrm{,0}.5\mathrm{,0}.5)` Side cube :math:`1m` Material properties ---------------------- * * * Elastic * :math:`E=5800.0\mathrm{E6}\mathrm{Pa}` Young's module * :math:`\rho =2500{\mathrm{kg.m}}^{-3}` Density * :math:`\nu =0.3` Poisson's ratio * * * DRUCK_PRAGER with linear negative work hardening * :math:`\alpha =0.33` Pressure Dependence Coefficient * :math:`{p}_{\mathrm{ultm}}=0.01` Ultimate cumulative plastic deformation * :math:`{\sigma }^{Y}=2.57\mathrm{E6}\mathrm{Pa}` Plastic constraint * :math:`h=-2.00\mathrm{E8}\mathrm{Pa}` Work hardening module * * * DRUCK_PRAGER with parabolic negative work hardening * :math:`\mathrm{\alpha }=0.33` Pressure Dependence Coefficient * :math:`{p}_{\mathit{ultm}}=0.01` Ultimate cumulative plastic deformation * :math:`{\mathrm{\sigma }}^{Y}=2.57E6\mathit{Pa}` Plastic constraint * * * * :math:`{\mathrm{\sigma }}_{\mathit{ultm}}^{Y}=0.57E6\mathit{Pa}` Ultimate constraint * DRUCK_PRAG_N_A with parabolic negative work hardening * :math:`\alpha =0.33` Pressure Dependence Coefficient * :math:`{p}_{\mathrm{ultm}}=0.01` Ultimate cumulative plastic deformation * :math:`{\sigma }^{Y}=2.57\mathrm{E6}\mathrm{Pa}` Plastic constraint * :math:`{\sigma }_{\mathrm{ultm}}^{Y}=0.57\mathrm{E6}\mathrm{Pa}` Ultimate constraint * :math:`\mathrm{\beta }=0.33` Initial expansion coefficient * * * Hydraulic behavior: saturated liquid * * * * :math:`\mathrm{Pre1}=1\mathrm{Pa}` Reference liquid pressure * :math:`{\rho }_{\mathrm{pre1}}=1000{\mathrm{kg.m}}^{-3}` Density of water * :math:`\mathrm{Poro}=0.14` Initial porosity * :math:`{\rho }_{\mathrm{vh}}=2400{\mathrm{kg.m}}^{-3}` Homogenized density * :math:`\mathrm{bio}=1` Biot coefficient * :math:`{K}_{\mathrm{intrinsèque}}=1E-18{m}^{2}` Intrinsic permeability * :math:`\frac{1}{{K}_{l}}=0` Incompressible liquid * :math:`\mathrm{vi}=1.0E-3\mathrm{Pa.s}` Viscosity Boundary conditions and loads ------------------------------------- Boundary conditions and loads are applied in two steps: * Step :math:`A`: :math:`t\in [\mathrm{0,1}\mathrm{.}]` **Boundary conditions** * * Knot pressure :math:`\mathrm{PRE1}=0.` * Imposed movements, of symmetry, on the faces of the cube belonging to the planes :math:`X=-0.5` :math:`\mathrm{DX}=0` :math:`Y=-0.5` :math:`\mathrm{DY}=0` :math:`Z=-0.5` :math:`\mathrm{DZ}=0` **Loading** * * We progressively apply :math:`p={2.10}^{6}\mathrm{Pa}` compression to the faces of the cube belonging to the planes: :math:`X=0.5`, :math:`Y=0.5` and :math:`Z=0.5` .. image:: images/Shape2.gif .. _RefSchema_Shape2.gif: * * * Step B: :math:`t\in \text{]}\mathrm{1,2}\mathrm{.}\text{]}` From the state of constraints obtained at instant :math:`t=1.s`, the following conditions are applied to the faces of the cube: **Movations** * * For the face belonging to plane :math:`Z=0.5`, the :math:`\mathrm{DZ}` displacement is gradually applied, following a ramp: .. image:: images/Shape3.gif .. _RefSchema_Shape3.gif: * * For faces belonging to planes :math:`X=-0.5,Y=-0.5,Z=-0.5`, symmetry conditions are applied. Loads: the loads applied are constant: * * * * Face belonging to plane :math:`X=0.5` :math:`p={2.10}^{6}\mathrm{Pa}` * Face belonging to plane :math:`Z=0.5` :math:`p={2.10}^{6}\mathrm{Pa}`