Reference problem ===================== Geometry --------- Geometry is a square [:ref:`1mx1m <1mx1m>`] Material properties ---------------------- Elastic properties: :math:`E\mathrm{=}150{10}^{6}\mathit{Pa}` :math:`\nu \mathrm{=}0.3` Parameters specific to the GonfElas model: :math:`{\beta }_{m}\mathrm{=}0.1142` Reference pressure :math:`A\mathrm{=}1.\mathit{Mpa}` Hydraulic properties: .. csv-table:: "Liquid water", "Density (:math:`{\mathit{kg.m}}^{\mathrm{-}3}`) Heat at constant pressure (:math:`{\mathit{J.K}}^{\mathrm{-}1}`) coefficient of thermal expansion of liquid (:math:`{K}^{\mathrm{-}1}`) Compressibility (:math:`\mathit{Pa}\mathrm{-}1`) Viscosity (:math:`\mathit{Pa.s}`)", "1.103 4180 10-4 5.10-10 10-3" "Gas", "Molar mass (:math:`\mathit{kg.}{\mathit{Mol}}^{\mathrm{-}1}`) Heat at constant pressure (:math:`{\mathit{J.K}}^{\mathrm{-}1}`) Viscosity (:math:`\mathit{Pa.s}`)", "0.002 1000 9. 10-6" "Skeleton", "Heat capacity at constant stress (:math:`{\mathit{J.K}}^{\mathrm{-}1}`)", "1000" "Constants", "Ideal gas constant", "8,315" "Homogenized coefficients", "Homogenized density (:math:`{\mathit{kg.m}}^{\mathrm{-}3}`) Biot coefficient Parameters of the Van-Genuchten model :math:`N` :math:`\mathit{Pr}(\mathit{Mpa})` :math:`\mathit{Sr}` ", "2000 1 1.61 16.106 0" "Reference state", "Porosity Temperature (:math:`K`) Capillary pressure (:math:`\mathit{Pa}`) Gas pressure (:math:`\mathit{Pa}`)", "0.366 303 0. 10" Initial conditions -------------------- At :math:`t=0`: * :math:`\mathit{Pgaz}=1\mathit{atm}` * :math:`S=\mathrm{0,5}` (i.e. :math:`\mathit{Pc}=\mathrm{44,7}\mathit{Mpa}` and :math:`{p}_{w}=-44.6\mathit{Mpa}`) * Total compressive stress equal to -1 atm. Boundary conditions and loads ------------------------------------- All trips are blocked at the edge (:math:`\mathit{DX}\mathrm{=}\mathit{DY}\mathrm{=}0`). The flows are zero. The initial saturation is :math:`\text{50 \%}`: we increase the saturation and we follow the evolution of the total stress. By definition, swelling pressure is the stress obtained upon complete restoration. To do this, a loading of capillary pressure decreasing linearly in :math:`\mathrm{1s}` between :math:`\mathrm{44,7}\mathit{Mpa}` and :math:`\mathrm{-}10\mathit{Mpa}` is imposed on the entire domain.