Reference problem ===================== Geometry --------- The field studied is a :math:`3m` bar. .. image:: images/1000000000000168000000A7B0D6772D8EDCB228.gif :width: 3.75in :height: 1.7398in .. _RefImage_1000000000000168000000A7B0D6772D8EDCB228.gif: Coordinates of points :math:`(m)`: :math:`A(0;0)` :math:`C(3;0.1)` :math:`B(3;0)` :math:`D(0;0.1)` Material properties ---------------------- Here we take data that leads to an almost unitary problem. The units then no longer have any physical meaning. Gravity is taken in the positive :math:`x` direction (which therefore corresponds to the vertical axis). .. csv-table:: "Liquid water", "Density :math:`({\mathrm{kg.m}}^{-3})` Viscosity :math:`(\mathrm{Pa.}s)` ", 1" 1" "Gas", "Viscosity :math:`(\mathrm{Pa.}s)` ", "1" "Homogenized parameters", "Gravity :math:`(\mathrm{m.}{s}^{-2})` Permeability :math:`K({m}^{2})` Porosity Sorption isotherm Relative permeability", ":math:`g=(\mathrm{9,81 };\mathrm{0 };0)` 1 0.5 :math:`{S}_{\text{we}}=\frac{1}{{\left[1+{(\frac{{P}_{c}}{1})}^{\mathrm{1,5}}\right]}^{1/3}}` :math:`\begin{array}{}{\text{kr}}_{w}(S)=1\\ {\text{kr}}_{\text{gz}}(S)=1\end{array}`" Boundary and initial conditions ----------------------------------- There is no flow everywhere. Initially, the medium is desaturated with a saturation of :math:`S=\mathrm{0,5}` over the entire domain, which corresponds to capillary pressure: :math:`\mathrm{Pc}=\mathrm{3,6}\mathrm{Pa}`. An initial gas pressure of :math:`1\mathrm{Pa}` is taken. No time ------------ We model :math:`1s` in the following way: * from :math:`0` to :math:`\mathrm{0,1}s`: 5 steps of time * from :math:`\mathrm{0,1}` to :math:`1s`: 9 steps of time Benchmark solution --------------------- In the steady state, hydrostatic equilibrium must be achieved. So we have to :math:`{\mathrm{\Delta P}}_{\text{lq}}=\rho \text{.}g\text{.}\mathrm{\Delta x}` With the data we have, it therefore gives us :math:`{\mathrm{\Delta P}}_{\text{lq}}=\mathrm{9,}\text{81}\ast 3=\mathrm{29,43}\mathrm{Pa}`