Reference problem ===================== Geometry --------- The field studied represents a section of land around a storage cell. D C 02 O 01 Y X B A Coordinates of the points (:math:`m`): .. csv-table:: ":math:`A` ", "0", "-500", "", "-500", "", ":math:`C` ", "10", "-400" ":math:`B` ", "10", "-500", "", "-500", "", ":math:`D` ", "0", "-400" ":math:`O` ", "0", "-450", "", "", "", "", "" Cell radius: :math:`5.6m` **Note:** *The alveolus is not scaled on the diagram.* Material properties ---------------------- Only the properties on which the solution depends are given here. The command file contains other material data (temperatures,...) that play no role in solving the problem at hand. +----------------------+---------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ |Liquid water |Density ( |1000 | + + :math:`{\mathit{kg.m}}^{\mathrm{-}3}` + + | |) | 1 | + + + + | | Viscosity | | + + + + | | | | +----------------------+---------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ |Homogenized parameters|Permeability |:math:`{10}^{\mathrm{-}18}{m}^{\mathrm{-}2}` | + + :math:`K` + + | | | | + + Sorption isothermal + .. image:: images/Object_95.svg + | | Relative permeability | :width: 229 | + + Porosity Storage + :height: 47 + | | | | + + + + | | | | + + + + | | | | + + + + | | | .. image:: images/Object_96.svg | + + + :width: 229 + | | | :height: 47 | + + + + | | | | + + + + | | | | + + + + | | | 0.14 :math:`4.{10}^{\mathrm{-}10}{m}^{\mathrm{-}1}` | +----------------------+---------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ Initial conditions --------------------- The problem has two phases: * A first phase of 15 years of desaturation corresponding to the operation of the underground structure. * A second phase of restoration after backfilling the cell corresponding to exploitation (the saturation of the cell is initialized to 0.7). The initial conditions are as follows: For phase 1 * Cell :math:`{P}_{c}\mathrm{=}\mathrm{9,4}{.10}^{7}\mathit{Pa}` (:math:`S\mathrm{=}\mathrm{0,49}`) * Geological barrier :math:`{P}_{c}\mathrm{=}{1.10}^{5}\mathit{Pa}` (:math:`S\mathrm{=}\mathrm{0,999}`) For phase 2 (:math:`t>15\mathit{ans}`) * Cell :math:`{P}_{c}\mathrm{=}\mathrm{3,015}{.10}^{7}\mathit{Pa}` (:math:`S\mathrm{=}\mathrm{0,7}`) Boundary conditions ----------------------- They are expressed in capillary pressure. Stage 1: On :math:`\mathrm{[}\mathit{AB}\mathrm{]}` :math:`{P}_{c}\mathrm{=}{1.10}^{5}\mathit{Pa}` On :math:`\mathrm{[}\mathit{CB}\mathrm{]}` Zero hydraulic flow On :math:`\mathrm{[}\mathit{CD}\mathrm{]}` :math:`{P}_{c}\mathrm{=}{1.10}^{5}\mathit{Pa}` On :math:`\mathrm{[}\mathit{A01}\mathrm{]}\mathrm{\cup }\mathrm{[}\mathrm{02D}\mathrm{]}` Zero hydraulic flow On the whole cell :math:`{P}_{c}\mathrm{=}\mathrm{9,4}{.10}^{7}\mathit{Pa}` (:math:`S\mathrm{=}\mathrm{0,49}`). Stage 2: On :math:`\mathrm{[}\mathit{AB}\mathrm{]}` :math:`{P}_{c}\mathrm{=}{1.10}^{5}\mathit{Pa}` On :math:`\mathrm{[}\mathit{CB}\mathrm{]}` Zero hydraulic flow On :math:`\mathrm{[}\mathit{CD}\mathrm{]}` :math:`{P}_{c}\mathrm{=}{1.10}^{5}\mathit{Pa}` On :math:`\mathrm{[}\mathit{AD}\mathrm{]}` Zero hydraulic flow