Reference solution (A, B and C models) ================================================ Validation of the water exchange term from the heat exchange term ---------------------------------------------------------------------------- A certain number of hypotheses are put forward in order to make the analogy with the thermal case: * the temperature is constant (no thermal calculation); * the gas pressure is constant; * Vapor pressure is negligible; * We are neglecting the broadcast of Fick; * The material is non-deformable (no mechanical calculations); * Gravity is zero; * Water is incompressible :math:`{\rho }_{w}=\mathit{cste}`. Recall that Darcy's law (see R7.01.11) for the gas phase is written as: .. math:: :label: eq-2 {M} _ {\ mathit {gz}} =- {\ rho}} =- {\ rho} _ {\ mathit {gz}} {\ mathit {gz}}} ^ {H}\nabla {p} _ {\ mathit {gz}} with: * :math:`{M}_{\mathit{gz}}` the gas flow; * :math:`{\rho }_{\mathit{gz}}` the density of the gas; * :math:`{\mathrm{\lambda }}_{\mathit{gz}}^{H}` the hydraulic conductivity of the gas; * :math:`{p}_{\mathit{gz}}` gas pressure. Gold: .. math:: :label: eq-3 {p} _ {\ mathit {gz}} =\ mathit {cste}\ Rightarrow\nabla {p} _ {\ mathit {gz}} =0 So: .. math:: : label: eq-4 {M} _ {\ mathit {gz}} = {M}} = {M} _ {\ mathit {as}} + {\ mathit {gz}} = 0 Since we're neglecting the Fick broadcast, then: .. math:: : label: eq-5 {M} _ {\ mathit {ad}} = {M} _ {\ mathit {VP}} =0 By () and (): .. math:: :label: eq-6 {M} _ {\ mathit {as}} =0 Thus we can simplify the problem, which boils down to the equation for the conservation of the mass of liquid water: .. math:: :label: eq-7 \ dot {{m} _ {w}}} +\ text {Div} ({M} _ {w}) =0 Or :math:`{m}_{w}={\rho }_{w}\mathrm{\varphi }S(1+\mathit{Tr}(\epsilon ))-{\rho }_{w}^{0}{\mathrm{\varphi }}^{0}{S}^{0}`, with: * :math:`{\rho }_{w}` the density of water, :math:`{\rho }_{w}^{0}` the density in the initial state; * :math:`\mathrm{\varphi }=\frac{{V}_{\mathit{vide}}}{V}` the porosity of the material, :math:`{V}_{\mathit{vide}}` corresponding to the unfilled pores, :math:`V` to the porosity of the material in the initial state; * :math:`S=\frac{{V}_{\mathit{lq}}}{{V}_{\mathit{vide}}}` water saturation, :math:`{S}^{0}` initial saturation; * :math:`\epsilon` the deformation of the material; The material is considered to be non-deformable: :math:`\epsilon =0` and :math:`\mathrm{\varphi }=\mathit{cste}={\mathrm{\varphi }}^{0}` and that water is incompressible, :math:`{\rho }_{w}={\rho }_{w}^{0}`. So: .. math:: :label: eq-8 {m} _ {w} (t) = {\ rho} _ {w} _ {w} ^ {0}\ mathrm {\ varphi} (S (t) - {S} ^ {0}) This involves: .. math:: :label: eq-9 \ dot {{m} _ {w}} (t) = {\ rho} _ {w} _ {w}\ mathrm {\ varphi} {\ partial} _ {t} S ({p} _ {c} (t)) = {\ rho} (t)) = {\ rho} _ {t)))) = {\ rho} _ {t}))) = {\ rho} _ {t}))) = {\ rho} _ {w} _ {w}\ mathrm {\ varphi} {S} ^ {\ text {'}}} ({p} _ {c} (t))) = {\ rho} _ {t}))) = {\ rho} _ {t})) = {\ rho} _ {t})\ dot {{p} _ {c}} (t) Since the effects of gravity are overlooked, Darcy's law for the liquid phase is written: .. math:: :label: eq-10 {M} _ {\ mathit {aq}} = {M} _ {w}} =- {\ rho} _ {w} {\ lambda} _ {\ mathit {q}}} ^ {H} (S) (S)\nabla {p} _ {w} Gold :math:`{p}_{c}={p}_{\mathit{gz}}-{p}_{\mathit{lq}}={p}_{\mathit{atm}}-{p}_{w}`. So :math:`\nabla {p}_{c}=-\nabla {p}_{w}` and therefore :math:`{M}_{w}={\mathrm{\rho }}_{w}{\mathrm{\lambda }}_{w}^{H}(S)\nabla {p}_{c}`. By replacing :math:`{M}_{w}` and :math:`\dot{{m}_{w}}` with their last expressions in () and assuming :math:`{\lambda }_{w}^{H}(S)=\frac{K\times {K}_{\mathit{rl}}(S)}{\mu }` to be a constant: .. math:: :label: eq-11 {\ mathrm {\ rho}} _ {w}\ mathrm {\ varphi} {S} {S} ^ {\ text {'}} ({p} _ {c})\ times\ dot {{p} _ {c} _ {c}} _ {c}}} (t) + {\ mathrm {\ lambda}}} _ {w} ^ {H} (S)\ text {Div} _ {c} _ {c})\ times\ dot {p} _ {p} _ {c} _ {c} _ {c} _ {c}} (t) + {\ mathrm {\ lambda}}} _ {w} ^ {H} (S)\ text {Div} _ {c}} (s)\ text {Div} _ {c}\ rho}} _ {w}\ mathrm {.} \nabla {p} _ {c}) =0 Water is assumed to be incompressible so: .. math:: :label: eq-12 {\ mathrm {\ rho}} _ {w}\ mathrm {\ varphi} {S}} ^ {\ text {'}} ({p} _ {c})\ times\ dot {{p} _ {c} _ {c}} (t) + {\ mathrm {\ rho}} (t) + {\ mathrm {\ rho}}} _ {w} {\ lambda}} _ {w} ^ {H}} _ {w} {\ lambda}} _ {w} ^ {H} (S)\ text {Div} (\nabla {p} _ {c}) =0 :math:`{\rho }_{w}\mathrm{\varphi }{S}^{\text{'}}({p}_{c})\times \dot{{p}_{c}}(t)+{\rho }_{w}{\lambda }_{w}^{H}(S)\text{Div}(\text{}\nabla {p}_{c})=0` With the Laplacian operator: .. math:: :label: eq-13 {\ mathrm {\ rho}} _ {w}\ mathrm {\ varphi} {S}} ^ {\ text {'}} ({p} _ {c})\ times\ dot {{p} _ {c} _ {c}} (t) + {\ mathrm {\ rho}} (t) + {\ mathrm {\ rho}}} _ {w} {\ lambda}} _ {w} ^ {H}} _ {w} {\ lambda}} _ {w} ^ {H} (S)\ mathrm {\ Delta} {p} {p} _ {c} =0 Finally: .. math:: :label: eq-14 {\ partial} _ {t} {p} _ {c} +\ frac {{\ mathrm {\ lambda}} _ {w} ^ {H} (S)} {\ mathrm {\ varphi} {S} {S} {S}} {S}} ^ {\ text {c}} ^ {c}} ^ {c}} ^ {c})}\ mathrm {\ Delta} {p} {p} {p}} _ {c} =0 To close the system, we add: * the initial condition: :math:`{p}_{c}(x\mathrm{,0})\mathrm{:}=10000\mathit{Pa}`; * the mixed condition on [BC] (or [BCFG] depending on the geometry): :math:`{\mathrm{\lambda }}^{H}\nabla ({p}_{c}\mathrm{.}n)={h}^{H}({p}_{\mathit{ext}}-{p}_{c})`. This formulation is similar to a heat equation without a source term, of the form: .. math:: :label: eq-15 \ mathrm {\ rho} {C} _ {p} {p} {\ partial} _ {t} T+\ text {Div} (q) =0 By taking Fourier's law that relates heat flow :math:`q` to the temperature gradient, namely: .. math:: :label: eq-16 q=-\ mathrm {\ lambda}\nabla T Assuming that :math:`\mathrm{\lambda }` is a constant, characteristic of the material: .. math:: :label: eq-17 {\ partial} _ {t} T-\ frac {\ mathrm {\ lambda}} {\ mathrm {\ rho} {C} _ {p}}\ mathrm {\ Delta} T=0 Where :math:`\mathrm{\rho }` is the density of concrete, :math:`{C}_{p}` is the specific heat of the material, and :math:`\mathrm{\lambda }` is the thermal conductivity. The thermal problem is thus already treated in THER_NON_LINE. We can then compare the results of the thermal problem with those of problem THM, by taking closure conditions of the same type as in the case THM, i.e. by asking: :math:`\begin{array}{c}T(x\mathrm{,0})=\mathit{cste}\\ \mathrm{\lambda }(\text{}\nabla T\mathrm{.}n)={h}_{T}({T}_{\mathit{ext}}-T)\mathit{au}\mathit{bord}\end{array}` In addition, ensuring that: * :math:`T(x\mathrm{,0})=\mathit{cste}\mathrm{:}={p}_{c}(x\mathrm{,0})=10000`; * :math:`-\rho {C}_{p}≔\mathrm{\varphi }{S}^{\text{'}}({p}_{c})` * :math:`\lambda \mathrm{:}={\lambda }^{H}` * :math:`{h}_{T}\mathrm{:}={h}^{H}` * :math:`{T}_{\mathit{ext}}\mathrm{:}={p}_{\mathit{ext}}` Subsequently, we then rely on thermal models AXIS, PLAN_DIAG, and 3D, and 3D, which are compared with models AXIS_THH2MS, D_ PLAN_THH2MS and 3D_ THH2MS, respectively.