Reference problem ===================== Geometry of the problem --------------------- It is a column with height :math:`\mathit{LZ}=5m`, length :math:`\mathit{LX}=1m`, and width :math:`\mathit{LY}=1m`. In :math:`Z=\frac{\mathit{LZ}}{2}`, this column has an interface-type discontinuity. The column is thus entirely crossed by the discontinuity. The geometry of the column is shown in the figure. .. image:: images/10000000000001A40000019F01972182FF094FCE.jpg :width: 3.7681in :height: 3.9571in .. _RefImage_10000000000001A40000019F01972182FF094FCE.jpg: **Figure** 1.1-a **: Problem geometry** Material properties -------------------- The parameters given in the Table correspond to the parameters used for modeling in the hydromechanical coupled case. The coupling law used is' LIQU_SATU '. The parameters specific to this coupling law are given but have no influence on the solution (because we chose to take a uniformly zero pore pressure throughout the domain). Only elastic parameters have an influence on the solution of the pseudo-coupled problem. .. csv-table:: "Liquid (water)", "Viscosity :math:`{\mu }_{w}(\mathit{en}\mathit{Pa.s})` Compressibility module :math:`\frac{1}{{K}_{w}}(\mathit{en}{\mathit{Pa}}^{\text{-1}})` Liquid density :math:`{\rho }_{w}(\mathit{en}\mathit{kg}\mathrm{/}{m}^{3})` "," :math:`\mathrm{1,0}` :math:`{5.10}^{\text{-10}}` :math:`1`" "Elastic parameters", "Young's modulus :math:`E(\mathit{en}\mathit{MPa})` Poisson's ratio :math:`\nu` Thermal expansion coefficient :math:`\alpha (\mathit{en}{K}^{\text{-1}})` "," :math:`5800` :math:`0` :math:`0`" "Coupling parameters", "Biot coefficient :math:`b` Initial homogenized density :math:`{r}_{0}(\mathit{en}\mathit{kg}\mathrm{/}{m}^{3})` Intrinsic permeability :math:`{K}^{\text{int}}(\mathit{en}{m}^{2})` "," :math:`1` :math:`\mathrm{2,5}` :math:`{\mathrm{1,01937}}^{\text{-9}}`" "Parameters of the cohesive law", "Critical constraint :math:`{\mathrm{\sigma }}_{c}(\mathit{en}\mathit{MPa})` Cohesive energy :math:`{G}_{c}(\mathit{en}\mathit{Pa}\mathrm{.}m)` Increase coefficient :math:`r` "," :math:`1.1` :math:`900` :math:`10`" **Table** 1.2-1 **: Material Properties** On the other hand, the forces associated with gravity (in the equation for the conservation of momentum) are neglected. The reference pore pressure is taken to be zero :math:`{p}_{1}^{\text{ref}}=0\mathit{MPa}` and the porosity of the material is :math:`\varphi =\mathrm{0,15}`. Boundary conditions ---------------------- The following Dirichlet conditions apply: * within the set of the domain, movements are blocked at zero (:math:`{u}_{\text{x}}=0`, :math:`{u}_{\text{y}}=0` and :math:`{u}_{\text{z}}=0` in the three-dimensional case), * on the [ABCD] and [EFGH] faces, the pore pressure is blocked at zero, * in the cohesive interface, fluid pressure :math:`{p}_{\text{f}}=10\mathit{MPa}` is imposed. The initial pore pressure in the matrix is zero. The test is carried out over a total period of time :math:`t=10s`. Parameter :math:`\mathrm{\theta }` is taken to be equal to :math:`\mathrm{0,56999999}`.