1. Reference problem#
1.1. Geometry#
height: \(h=\mathrm{1m}\)
width: \(l=1m\)
thickness: :math:`e=1m`
For C and D models, a 2D geometry will also be distinguished from :math:`\mathrm{1m}\mathrm{\times }\mathrm{1m}`.
1.2. Material properties#
3D general case (transverse isotropy)
Settings specific to ELAS_ISTR:
\({\%}_{L}=9\mathit{GPa}\) \({\%}_{N}=18\mathit{GPa}\) \({N}_{L}=0.24\) \({N}_{L}=0.48\) \({G}_{L}=8.88\mathrm{GPa}\)
The transverse anisotropy coordinate system is defined by the nautical angles \(\alpha =30°\) and \(\beta =-60°\).
2D general case (orthotropy)
Settings specific to ELAS_ORTH:
For the C and D models, which are D_ PLAN, a variant will be made by considering that the 2D plane corresponds to the anisotropy plane. In this case:
\({\%}_{L}=9\mathit{GPa}\) \({\%}_{T}=18\mathit{GPa}\) and \({\%}_{N}=9\mathit{GPa}\)
\({N}_{L}=0.48\) \({N}_{L}=0.24\) \({{\rm N}}_{\%}=0.48\) \({G}_{L}=8.88\mathrm{GPa}\)
The transverse anisotropy coordinate system is defined by the nautical angle \(\alpha =40°\).
Parameters related to THM (here without impact since the pressure is kept zero):
\(\text{PORO}=0.14\), the Biot coefficients \({B}_{L}=0.3\) and \({B}_{N}=0.6\).
1.3. Boundary conditions and loads#
On the edge \(x=\mathrm{1m}\): application of lockdown \(P=\mathrm{25MPa}\)
On the edge plane \(z=\mathrm{1m}\): application of confinement \(P=\mathrm{29MPa}\) (3D case)
On the plane edge \(y=\mathrm{1m}\): application of a movement of \(\mathrm{0,01}m\) following a ramp of \(\mathrm{1s}\).
Symmetry conditions are applied to the other edges and the pressure is maintained at zero everywhere (total drainage).
1.4. Initial conditions#
The initial constraints are anisotropic (in the global plane), i.e.:
\({\sigma }_{\mathrm{xx}}=-\mathrm{25MPa}\); \({\sigma }_{\mathrm{yy}}=-\mathrm{22MPa}\); \({\sigma }_{\mathrm{zz}}=-\mathrm{29MPa}\)